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Sommario

Il lavoro si propone di ottenere un’approssimazione analitica per archi di trai-
ettoria a bassa spinta che permetta di rappresentare efficacemente lo scosta-
mento rispetto all’orbita kepleriana standard. Sono state adottate due tec-
niche perturbative (i) singolare e (ii) standard, nelle quali il parametro di
perturbazione, €, & funzione dell’accelerazione fornita dal propulsore a bassa
spinta, T'/m e della accelerazione di gravita, u/r?. Il moto kepleriano for-
nisce i termini di ordine zero dell’espansione e i coefficienti per I’espansione al
primo ordine sono funzione dei valori iniziali dei parametri orbitali e del mod-
ulo e direzione della spinta. Nel primo caso (perturbazione singolare) si opera
direttamente sulle equazioni fondamentali della astrodinamica, ’approccio e
semplice, ma limitato a problemi bidimensionali e fornisce soltanto la vari-
azione secolare dei parametri orbitali. Il secondo approccio (perturbazione
standard) opera sulle equazioni variazionali di Gauss, si trattano quindi prob-
lemi tridimensionali, identificando correttamente il drift degli elementi or-
bitali e la loro variazione sia di lungo che di corto periodo in una scala di
tempo sub—orbitale.

Questa nuova tecnica ¢ valutata in termini di accuratezza della soluzione e
tempo computazionale comparando le sue performance con quelle ottenute da
una procedura numerica standard (Metodo di Encke), e un’approssimazione
analitica basata sulla trasformata di Fourier, dimostrantosi migliore degli al-
tri in termini di tempo computazionale. L’espansione puo essere usata per
effettuare la propagazione orbitale per molte orbite, se il termine perturbativo
rimane abbastanza piccolo, altrimenti gli archi di traiettoria devono essere
ridotti e i coefficienti delle espansioni devono essere aggiornati per ridurre
I’errore. L’uso dell’espansione per la discretizzazione di traiettorie interplan-
etarie e analizzato nel contesto dei metodi di ottimizzazione diretta per una
ottimizzazione di traiettoria, si e riscontrato un considerevole risparmio di
tempo computazionale per ottenere soluzioni ottimali non troppo accurate
che rende il metodo interessante per ottenere velocemente soluzioni di primo
tentativo per trasferte interplanetarie ottimali da fornire in ingresso a ot-
timizzatori piu accurati.
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Abstract

The objective of the work is to derive an analytical approximation for low—
thrust trajectory arcs, that is, a mathematical representation of how the
trajectory of a space vehicle deviates from a standard Keplerian orbit under
the action of a low—thrust propulsion system. The objective is pursued by
means of the application of both (i) singular and (ii) standard perturbation
approaches, where the perturbation parameter, €, is the ratio between the
acceleration produced by the low—thrust engine, 7'//m, and gravity acceler-
ation of the primary body, u/r? and Keplerian motion provides the zero—
order term of the expansion. Coefficients for the first-order perturbative
terms are expressed as a function of initial values of orbit parameters and
thrust intensity and direction. In the first case, the multiple scale method
is adopted for directly expanding the solution to the fundamental equation
of astrodynamics. The approach is simple, but it is limited to planar prob-
lems and it provides the secular variation of orbit parameters only. On the
converse, the second approach, based on standard perturbation of Gauss’s
variational equations, allows for dealing with three—dimensional problems,
correctly identifying both the drift in the orbital elements and their short—
term variation on a sub—orbital time scale.

This novel approach is tested in terms of solution accuracy and com-
putational time by comparing its performance with those obtained from a
standard numerical procedure (e.g. Encke’s integration method), and an-
other analytical approximation based on Fourier transform. The perturba-
tion method outperforms the others in terms of computational time, and the
expansion can be used for propagating a low—thrust trajectory over several
orbits, if the perturbing term remains sufficiently small. For higher values of
g, the trajectory arc must become suborbital and the coefficients of the ex-
pansion must be updated for keeping the error under a prescribed threshold.
This motivates a careful analysis of the propagation error as a function of
perturbing acceleration and trajectory arc amplitude, in order to identify the
limits to the considered first order expansion. As a possible practical appli-
cation of the standard perturbation approach, its use for the discretization
of an interplanetary trajectory is considered in the framework of a trajectory
optimization problem. The considerable savings in terms of computational
time for deriving a fairly accurate optimal solution enhances the interest in
the method, as a possible means for rapidly obtaining first—guess solutions
for interplanetary optimal transfers, to be refined by more accurate propa-
gation techniques once the most promising regions of the search—space have
been identified by means of this faster propagation approach.
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Approssimazioni di traiettorie a
bassa spinta mediante tecniche
perturbative

L’obbiettivo del lavoro ¢ derivare un’approssimazione analitica per archi di
traiettoria a bassa spinta, ossia una rappresentazione matematica della de-
viazione che subisce la traiettoria di un veicolo spaziale rispetto alla or-
bita kepleriana standard sotto l’azione di una propulsione a bassa spinta.
L’obbiettivo ¢ perseguito mediante I'applicazione di due tecniche perturba-
tive (i) singolare e (ii) standard, nelle quali il parametro di perturbazione,
e, ¢ dato dal rapporto tra l'accelerazione prodotta da un motore a bassa
spinta, T'/m, e la accelerazione di gravita causata dal corpo primario, /72
e il moto kepleriano fornisce i termini di ordine zero dell’espansione. I co-
efficienti per ’espansione al primo ordine sono espressi come funzione dei
valori iniziali dei parametri orbitali e del modulo e direzione della spinta.
Nel primo caso, la scala multipla ¢ adottata per ottenere direttamente la
soluzione delle equazioni fondamentali della astrodinamica. L’approccio e
semplice, ma e limitato a problemi planari e fornisce soltanto la variazione
secolare dei parametri orbitali. Per contro, il secondo approccio, basato sulla
perturbazione standard delle equazioni variazionali di Gauss, permette di
risolvere problemi tridimensionali, identificando correttamente il drift degli
elementi orbitali e la loro variazione sia di lungo che di corto periodo in una
scala di tempo sub—orbitale.

Questo approccio innovativo e testato in termini di accuratezza della
soluzione e tempo computazionale comparando le sue performance con quelle
ottenute da una procedura numerica standard (ad esempio il mediante il
metodo di integrazione di Encke), e un’altra approssimazione analitica basata
sulla trasformata di Fourier. Il metodo perturbativo si dimostra migliore degli
altri in termini di tempo computazionale e I’espansione puo essere usata per
effettuare la propagazione orbitale per molte orbite, se il termine perturba-
tivo rimane abbastanza piccolo. Per valori piu alti di e, gli archi di traiettoria
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devono essere ridotti a distanze sub orbitali e i coefficienti delle espansioni de-
vono essere aggiornati per tenere 1’errore sotto una soglia prescritta. Questo
motiva la attenta analisi dell’errore sulla propagazione orbitale come fun-
zione del parametro perturbativo e dell’ampiezza dell’arco di traiettoria, in
modo da identificare i limiti della espansione al primo ordine considerata in
questa tesi. Come possibile applicazione pratica della perturbazione stan-
dard, il suo uso per per la discretizzazione di traiettorie interplanetarie e
analizzato nel contesto dei metodi di ottimizzazione diretta per una ottimiz-
zazione di traiettoria. Il considederevole risparmio di tempo computazionale
per ottenere soluzioni ottimali non troppo accurate evidenzia gli aspetti inter-
essanti del metodo, che potrebbe venire utilizzato come possibile strumento
per ottenere velocemente soluzioni di primo tentativo per trasferte interplan-
etarie ottimali, da fornire in ingresso a ottimizzatori piu accurati che possano
calcolarle con maggiore precisione, una volta che le regioni pit interessanti e
promettenti dello spazio di ricerca sono state identificate per mezzo di questo
veloce strumento basato sulle espansioni perturbative.

Caratteristiche Generali

Due differenti approssimazioni analitiche per traiettorie a bassa spinta sono
state derivate per mezzo dell’applicazione di tecniche perturbative, entrambe
usano come variabile indipendente una coordinata angolare. Il primo approc-
cio introduce delle espansioni in funzione di # nelle equazioni bidimensionali
del moto mentre nel secondo le espansioni sono funzione della longitudine me-
dia L inserite nelle equazioni variazionali di Gauss. Il metodo della doppia
scala ¢ piu semplice ma ¢ limitato all’analisi di problemi piani mentre il
secondo - perturbazioni standard - e piu complesso ma tridimensionale.

I risultati ottenuti per mezzo delle espansioni perturbative nella valu-
tazione della evoluzione dei parametri orbitali in traiettorie a bassa spinta
sono soddisfacenti, specialmente se si considera il metodo di perturbazione
standard, esso e capace di catturare i termini sia di lungo che di corto periodo
e non ¢ soggetto ad alcuna singolarita per orbite circolari e con inclinazione
nulla, dal momento che la formulazione e basata su elementi equinoziali. La
solidita delle formulazioni e stata provata per mezzo di molte simulazioni in
cui i risultati venivano comparati con un’accurata soluzione numerica basata
sul metodo di Encke. E’ stato effetuato inoltre un altro confronto con una ap-
prossimazione analitica trovata in letteratura [18] basata sulle espansioni in
serie di Fourier, che si ¢ dimostrata migliore dal punto di vista del risparmio in
tempo computazionale ma che coglie solo i termini di lungo periodo e neces-
sita di un controllo periodico per poter applicare la trasformazione di Fourier.
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Il risparmio in tempo computazionale rispetto alla soluzione completamente
numerica ¢ considerevole nel caso della propagazione orbitale, entrambe le
formulazioni derivate consentono una riduzione sul tempo della CPU tra il
90 e il 98% se si vogliono calcolare tutti i punti dell’arco propagato, esatta-
mente come fa un metodo numerico. Ma il metodo approssimato consente
anche una valutazione diretta del punto finale di un dato arco, senza la ne-
cessita di calcolare tutti i punti intermedi, cosa che per un metodo numerico
e imprescindibile.

Ci sono dei limiti che restringono la possibilita di applicare le espansioni
trovate. In generale il rapporto € tra l’accelerazione del veicolo e quella
gravitazionale deve essere limitato affinche si possano ottenere risultati pit
accurati oppure si deve ridurre la lunghezza massima dell’arco approssimato.

Riguardo le perturbazioni in doppia scala ci sono delle limitazioni speci-
fiche:

e il modulo della spinta e assunto costante, cosi come la direzione della
stessa e scelta o allineata con la velocita o fissa rispetto al sistema di
riferimento radiale—trasversale;

e il rapporto tra l'accelerazione del veicolo e quella gravitazionale deve
essere limitato affinche si possano ottenere risultati piu accurati oppure
di deve ridurre la lunghezza massima dell’arco approssimato;

e la derivazione ¢ stata ottenuta solamente per problemi bidimensionali;

Quest’ultimo aspetto ¢ particolarmente rilevante dato che restringe con-
siderevolmente il campo applicativo, impedendo di trattare missioni, o parti
di esse, in cui sono presenti trasferimenti che implicano cambiamenti di piano.

Anche per la perturbazione standard il modulo della spinta & assunto
costante e la sua direzione e fissa rispetto al sistema di riferimento radiale—
trasversale—normale, ma per il resto la trattazione ¢ del tutto generale.

Va sottolineato che le limiatazioni imposte dalla costanza del modulo della
spinta e della sua direzione non rappresentano un limite eccessivo dal punto
di vista applicativo dato che si puo discretizzare la traiettoria e si possono
assumono dei valori costanti per le variabili di controllo in ogni sotto—arco, la
cui lunghezza sara fissata in modo tale da limitare 1’errore sulla propagazione
dei parametri orbitali.

E’ stata effettuata anche una accurata valutazione dell’errore, si e visto
che la precisione delle espansioni e una funzione dell’accelerazione adimen-
sionalizzata e ovviamente della lunghezza angolare dell’arco approssimato.
Si e quindi analizzato il valore del parametro perturbativo ¢ in due contesti
tipici, geocentrico ed eliocentrico, per una configurazione di veicolo mod-
erno. Si e visto che con la corrente tecnologia in caso geocentrico i valori del
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parametro perturbativo rimangono alquanto bassi e quindi possono venire
approssimati archi anche abbastanza grandi; mentre nel caso di missioni in-
terplanetarie lontane dal sole (ad esempio ad una distanza vicina a Giove)
I’approssimazione puo essere fatta per archi molto piu piccoli a causa del
valore elevato assunto dall’accelerazione adimensionalizzata. Va comunque
detto che in caso di veicolo molto lontano dal sole il modello di spinta impul-
siva puo nuovamente essere considerato valido anche per la propulsione elet-
trica, dato che in tal caso il tempo per il quale viene acceso il motore diventa
trascurabile cosi come la variazione di posizione, quindi l’approssimazione
con spinta continua non e piu necessaria.

Applicazione Preliminare ad un Problema di
Ottimizzazione Diretta

Le approssimazioni analitiche trovate mediante la perturbazione standard
sono state applicate ad un metodo di ottimizzazione diretta, il loro compito
e stato sostanzialmente la sostituzione del propagatore d’orbita numerico, e
potrebbero venir applicate anche per implementare il calcolo analitico delle
derivate dei gradienti dell’indice di ottimizzazione e della Matrice Jaconi-
ana, ma questo aspetto non viene preso in considerazione in questo studio.
Sono state percorse due vie per 'implementazione delle espansioni, una con
propagazione in avanti a partire dai punti iniziali e una centrata: ¢ chiaro
che per lo stesso cammino angolare totale I’espansione centrata propaghi per
una minore distanza dal punto iniziale e quindi ci si aspetta una precisione
migliore. I risultati confermano questo trend atteso, con 'approssimazione
centrata si ottiene una precisione migliore di due o tre volte rispetto alla
propagazione in avanti per la stessa lunghezza totale di arco approssimato.

Queste tecniche permettono un grande risparmio di tempo computazionale
rispetto ad una integrazione puramente numerica e la loro principale appli-
cazione potrebbe essere quella di implementare un veloce algoritmo capace
di ottenere soluzioni ottime non molto accurate da fornire come soluzioni di
primo tentativo ad un ottimizzatore numerico raffinato, avendo perlustrato
lo spazio di ricerca della soluzione e identificato le zone di maggior interesse
con il metodo approssimato.

Lavori Futuri e Estensioni

I passi futuri per la ricerca dell’applicazione di tali espansioni analitiche per
la propagazione di orbite a bassa spinta possono essere descritti come segue:
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e Implementazione di un’efficace metodo di derivazione analit-
ica: la disponibilita si espansioni analitiche permette di ottenere delle
espressioni analitiche per le derivate dell’indice di ottimizzazione e per
la matrice Jacobiana.

e Implementazione di una tecnica mista: le tecniche doppia—scala e
perturbazione standard possono essere integrate in un approccio misto
che permetta di ottenere la stessa precisione usando sotto—archi piu
lunghi per via del minore drift legato al valore di € di cui e affetta la
doppia scala, che cattura solamente i termini di lungo periodo.

E’ inoltre possibile pensare di ottenere una descrizione completamente
tridimensionale per 1’approccio doppia-scala in modo da allargare il suo
campo applicativo a trasferimenti che descrivano un cambio piano; oppure
si puo cercare di ottenere una approssimazione mediante la perturbazione
standard ma al second’ordine, in modo tale da aumentare la accuratezza e
permettere I'utilizzo di archi piu lunghi. Entrambi questi obbiettivi sembrano
comunque alquanto complessi ma sarebbero capaci di garantire un notevole
miglioramento per le potenziali applicazioni delle espansioni perturbative nel
campo del progetto e analisi delle missioni spaziali.



Chapter 1

Introduction

1.1

Objective of the work

In this chapter are analyzed the logical steps which justify the work

Interplanetary missions or mission with great energy changes or plane
changes need a lot of fuel if conventional propulsion systems are used;

The electric propulsion could represents a solution (high I,,) but it has
other kind of problems (low—thrust, high electric power requirements,
power budget problems if coupled with solar panels);

Low-thrust radically changes the trajectory nature: it is not a keplerian
motion anymore with impulsive AV, but there are finite arcs along
which the energy and/or the velocity are changed;

This aspect complicates the difficult issue of optimizing the trajectory
for a given mission objective;

Analytical approximations could help:

— to describe compactly the trajectories;

— to facilitate the search of optimal solutions by means of the iden-
tification of good candidates;

Thus the aim of the work is to find some analytical approximations by
means of which describing in a simple and compact way the trajectory of a
low—thrust propelled vehicle.



1.2 Space Missions Design

The design phase in Space Missions is crucial for several reasons since it
has the fundamental task of defining, all the major aspects of the mission.
Given the complexity of the problem only a general outline of mission phases
and related ‘costs’ will be initially derived, whereas a more accurate defini-
tion of every engineering aspect related to the mission will be refined during
the design process. But in doing so, this phase is constrained by a lot of
opposite needs, in fact if on one side the so called time-to—market require
all the studies to be fast, the horizon of new futuristic objectives, requires
a tight precision so a typical computational demanding process of accurate
calculations.

In this framework, trajectory design represents one of the most challeng-
ing tasks because of the relevance of the analysis to be performed. It usually
requires maximization or minimization of a performance index, for example
maximize final mass or payload, minimize AV, that is propellant consump-
tion, or trip time, for given mission requirements. The set of typical missions
are

e transfer between specified orbits;

e rendezvous mission (transfer from a specified orbit to a definite time-
dependent position on a target orbit);

e interplanetary missions (peculiar rendezvous missions);
e station keeping;

but often a complete mission shows more than one of the prevoius phases
and more than one time each.

The problem of fuel consumption in particular is crucial when dealing
with missions involving long expected operational times. The efficiency of the
spacecraft acceleration can be measured by comparing the velocity increment
AV with the characteristic velocity ¢ of the propellant. Specific impulse I,
is defined as

Isp = (11)

where gq is the gravity acceleration measured on the Earth surface. From
Tsiolkovsky equation [6] one can express

A
Vo jog ™ (1.2)
gOIsp mo




where m; is the initial mass and mgy the final one (after the engine burn).
It is easy to see that as I, goes higher the mass reduction would decrease
rapidly. If one considers a limit case as’

AV = gyl =c
the final mass would be

my = % = 0.3679 m,

For a mission from Earth to Mars a AV as large as 18 km/s is required
one way, so that in order to meet the requirement set by the previous equa-
tion a Iy, of 1800 s would be needed. The maximum value given by the
most efficient chemical propulsion fuel-oxidizer combination (Hydrogen and
oxigen) is about 450 s?. A different type of propulsion system is thus needed
such as electrical propulsion. With this class of thrusters, I, from 1000
up to values as high as 5000 s can be reached?. Unfortunately, low-thrust
propulsion systems are characterized also by some negative features:

e low values of thrust: high I, values are reached accelerating a very
small amount of fuel; in general both the Iy, and propulsion system
thermodynamic efficiency 7,; are an inverse function of mass flow rate
for given electrical power P,, but since the thrust force is directly linked
to this quantity

T = myc

it is clear that this kind of engines can provide values of thrust that,
in general, are small, typical values ranging from 107> N up to 10 N
maximum;

e power requirement: in order to have an acceptable efficiency 7., high
values of current and/or voltage are needed; this means in turn that
the power requirement could easily be as high as few MW. It could be
fullfilled by using the system in the quasi-stationary regime with the
aid of accumulators, but even with a At,,, equal to the 10% of the duty
cycle, hunderd of kilowatts are needed. This requirement could not

IThis is a typical example used to show how the ratio AV/c is important for having a
sufficient final mass.

2The most efficient combination is given by Hydrogen and Fluorure but it is not used
because of handling and toxicity problems.

3There are some unprototyped projects which can reach I, even higher of about 10* s
but they are not ready yet and the thrust values are so small that cannot be adopted for
interplanetary missions.



be satisfied by means of solar panels, especially for mission far away
from the Sun so the common idea is to move towards nuclear power
generator?;

e critical operative conditions: [, and efficiency 7 usually are also a
function of fuel temperature in the electro-thermal thrust but even if
they are function of the plasma current this cause a temperature rise
due to the Joule effect and since the materials could stand to maximum
steady temperature of about 2000 K this constraint results into another
limit to engine performance. Also in this case the quasi-stationary
regime could help but it does not eliminate the problem:;

e unqualified and experimental equipment: finally the non-existence of
qualified systems is also an important limit of this kind of propulsion,
in terms of system reliability

Beside the issues related to system hardware and overall vehicle archi-
tecture, which are significantly affected by the use of this class of thrusters
instead of a more conventional system based on chemical rockets engines, the
need of lower consumption make necessary an effective way for analyzing all
the mission trajectory manouvers. It can be done in different ways and by
means of different methods (direct and indirect ones, they are described later
on): optimization could mean

e constrained optimization: identify a performance index (fuel consump-
tion or trip time to be minimized for example), fix some primary con-
trains (e.g. maximum trip time or maximum fuel consumption re-
spectively) and secondary ones (maximum g-load in a given direction,
maximum total ionizing dose absorbed, etc.) and look for a, possibly
global, optimal solution;

e constrained multi-objective optimization: it is very similar to the pre-
vious one but more than one performance index is considered at the
same time and this make the whole process more difficult but it should
also be a more effective way of finding real optimal solutions.

These ways could be faced by means of different approaches, without entering
in details here, there are three big families of optimization methods, indirect,
gradient based (they are colled direct in what follows) and evolutionary al-
gorithms, each one has different pros and cons, but all of them are widely
adopted.

4In this case environmental and and safety issues must be faced.



There are a lot of examples of this kind of research in literature, in par-
ticular for the so called direct optimization field with the use of the DFET
technique (Direct Transcription by Finite Element in Time) the works of
Vasile and Bernelli Zazzera (cf. [21], [22], [23] and [24]) are a typical refer-
ence point, in their works various mission are used as a benchmark, usually
they assume a thrust with a variable orientation and magnitude which is as-
sumed to be dependent on the Sun distance (variable electric power income)
and consider also fly-bys manouvers. The approach is the typical one encoun-
tered in direct methods®, the states and the controls are discretized along the
whole trajectory and the final profile is obtained by means of interpolation.

For the indirect optimization there are also a lot of examples in which
the electrical propulsion is adopted, in particular here it has been reported
the work of Casalino (cf. [5]), also in these case fly-bys are taken into ac-
count, but this time the states and controls are directly derived as continue
functions.

The optimization for low—thrust trajectories by means of evolutionary
methods could not be performed due to the number of variable too high which
comes out from the discretization of the trajectory that is incompatible with
those methods.

The optimization process is composed , for any type of optimization
method, by some analytical relations but also many numerical evaluations so
their computational time is strictly dependent on the progress of the com-
puters velocity; the whole process would become faster and faster if some
part of the numerical calculation could be performed analitically, or at least
with some very good analitical approximations. In addition there are some
other difficulties related to interplanetary trajectories optimization related
to the research domain so particular strategies are needed:these are the main
reasons of the work aim.

1.3 Elements of the Analysis

1.3.1 Basic Space Flight Mechanics

The motion of a spacecraft of mass m under the influence of a big mass
M > m (either a planet or the Sun) is known to be a conic section, from
Newton classical mechanics and under a set of simplifying assumptions. The
simplest approach to the description of the resulting motion neglects all other
forces, like gravitational influence from other bodies, solar radiation pressure,

5The reason of this will be clear after the dedicated section.



aerodynamic drag, and so on; resulting in the so called restricted® two body
problem. The resulting equation of motion is

where 7 is the distance vector between the spacecraft and the main body and
= GM is the gravitational parameter.

Once initial conditions (e.g. position and velocity at time () are known,
the trajectory of the vehicle can be described by an analitical relation, for
the motion in the (fixed) orbital plane. A three dimensional trajectory is ob-
tained once the position of the orbital plane with respect to a fixed inertial
frame is defined. A total of six constants, the so called orbital parameters,
provide a complete geometrical description of the spacecraft motion in the
absence of perturbative forces as a funtion of the six components of initial po-
sition and velocity vectors’. Given these quantities one can evaluate forward
or backward in time spacecraft position with respect the assumed intertial
frame, the only numerical procedure being necessary for inverting Kepler’s
time equation in those cases when orbit propagation at a given instant is
considered.

During a space mission it is ofted ncessary to transfer the spacecraft from
an initial orbit to another one, e.g. for performing an orbit menoeuvre for
reaching the final operational orbit from a transfer orbit; for injecting an
interplanetary probe onto an hyperbolic orbit for leaving the Earth’s sphere
of influence; or just for compensating the effects of perturbations that slowly
affects the orbit flown by the spacecraft, making it drift awawy form the
desired operational one.

In all these cases it is necessary to change the velocity vector, its magni-
tude and/or its direction. The magnitude of velocity variation AV is directly
related by means of Tsiolkovsky’s equation with fuel consumption, so that
minimizing the total AV for performing a given mission or a mission task,
will result in a beneficial reductino of the fuel required, which in turn means
either (i) a higher payload weight for a given launcher size or a(ii) a smaller
overall vehicle weight at launch which may allow for saving on launch cost,
or (iii) a longer operational life for the vehicle

If the AV is applied by means of chemical propulsion an impulsive ap-
proximation is usually valid, where the AT,, during which the thruster is
turned on is assumed to be a negligible fraction of the orbit period, and
the spacecraft position can be considered as approximately constant. The

6Remember that the first assumption m < M.
"The dynamic system in composed by a second order vector differential equation, so
that six initial conditions are needed to have a unique solution.



velocity thus changes almost instantaniously and the knowledge of direction
and magnitude of the AV is sufficient for easily deriving the new trajec-
tory by means of analitical determination of the new orbit parameters of the
trajectory that results from the application of the considered AV. In this
framework it is clear how, when dealing with chemical propulsion most of
the relations for the spacecraft motion in space are analytical.

Things become significantly more complex when electric propulsion is
used, in which case the typical AT,, can become of the same order of mag-
nitude as the orbital period, and the position can no longer be considered
as constant. Low thrust could be considered as a perturbation acting on the
spacecraft, slowly changing its trajectory.

In order to evaluate how the vehicle would move under the influence of
such a force one must integrate numerically the equation of motion for the
perturbed case

i = —%f+&p (1.3)

In many applications the perturbing term is due to the presence of the
mentioned simplifying assumtions that neglects less significant forces, such
that a;, < p/r* where @, is the perturbative acceleration. If the acceleration
obtained from the electrical propuslion system is small compared to gravita-
tional one it can be trated as a general perturbation acting on the satellite
and all the methods derived in this field can be applied in a straightforward
way.

When a perturbation is small compared with gravity acceleration, the re-
sulting numerical problem is not simple to integrate if written in the previous
form. There are many approaches to the problem of orbit propagation in the
presence of perturbations:

e Cowell’s Method
e Encke’s Method
e Gauss’s Variational Equations

The first one consist simply in writing the equation of motion in spherical
coordinates. In this way all the three variables have a comparable rate of
change and the numerical integration can procede well provided that a careful
choice of integration step and order of the numerical scheme are selected.
The second method splits the problem into two parts: in the first one
only the unperturbed trajectory in considered, i.e. the analitical evolution
of the radius in time is known since it is a Keplerian motion; and the second
part consist in integrating in time the difference 07 between the unperturbed



radius and the actual one in the presence of perturbations, which has its own
expression for the dynamic equation and is suitable for numerical integration
after some wise manipulations (see Appendix A for details).

The third method is based on a different point of view: the dynamic
system is transformed from the ¥ and U equations to a set of six equations
for the orbital parameters. These quantities would remain constant in the
of absence of perturbations whereas in case of disturbance they slowly vary
and a numerical integration scheme is effective in estimating this variation
as a function of perturbing force expressed in terms of radial, transverse and
normal components.

At this point it is clear that, in case a low thrust propultion system
is used, the simple evaluation of the trajectory requires a numerical inte-
gration which is usually a computational demanding process. If the orbit
propagation scheme is integrated in an optimization method in which the
trajectory evaluation is performed 10* times, in order to investigate optimal
control force profiles for mission objectives, computational cost and time can
become hardy feasible.

It is thus obvious that the derivation ot an analytical (although approxi-
mated) expression for the evolution of orbit parameters under the action of a
low—thrust propultion system is of great interest for both the representation
of the resulting motino in terms of a limited number of relevant parameters,
and for obtaining fast and computationally efficient orbit propatgation tools
to be used for preliminary mission design.

1.3.2 Quick Introduction to Perturbation Methods

There are a lot of examples of systems in which the mathematical model
present a relation not analitically solveble due to the presence of a very small
term which, if eliminated, allow to reach an analitical closed form solution.
Appendix B presents few systems of this kind, that are classical examples
such as oscillators with small damping or small masses. In more general
terms, the complex procedure of perturbation methods could be outlined as
follows: the system solution is supposed to be dependent on the indipendent
variable and on the small parameter €, z = ¢ (¢). One thus expands the
solution in terms of a function of e, usually a power series of ¢,

¢ (e) = do+epr + 2P + ...

and substitute this expansion into the equation of the system of differential
equations.

A new set of equations is derived imposing equality for terms of the same
order of magnitude, by which determining the quantities ¢; in order to have



a consistent solution. Note that the knowledge ot the solution zy = ¢ for
¢ = 0 is postulated and necessary for starting the precedure.

In order to make this procedure more clear an example presented in more
details in Appendix B on Kepler’s time equation is here , based on application
of the perturbative expansions to an algebraic relation. The equation is

E —esinE =tn. (1.4)

It is easy to see that if the eccentricity is zero the solution is trivial, so one
can think to look for a solution E (¢;e) for e — 0, which can be useful for
near circular orbits since in these cases it is 0 < e <« 1. The solution is
assumed to be given in the form

E(te) = Eo (t0) + ¢2 (€) By () + @3 (e) B3 (t) + 0 (g3 (e))

and the dependence on the small parameter e is exploited by the functions
¢, = €71, so that, for a second order accurate expansion, one gets

E(t;€) = Ey (t;0) + eEy (t) + € E5 (t) + o (€7)
Substituting it into equation (1.4) the equation achieves the form
(EO + el + 62E3) — esin (EO + el + €2E3) =1in

where introducing the McLaurin series for the sine function and collecting
the different quantities one obtains with the same order for e

Ey + e (Ey —sin Ey) + % (B3 — Eycos Ey) = nt

The previous mentioned tuning relations are thus obtained by comparing the
terms in the two sides of the equation, that is

EO = nt, EQ = sin Eo, E3 = EQ COS Eo,
The solution found thanks to this expansion is
E (t;e) = nt + esin (nt) + e sin (nt) cos (nt)

in figure 1.1 is plotted the erro between the exact solution and the approxi-
mated one.

This example it is effective for making clear how the perturbative ex-
pansion works. Togheter with the calculation, a good understanding of the
limits and convergence issues must be considered since the formal process



0.031

0.025

0.02

0.015F

0.01

Absolute Error [deg]

0.005

Time

Figure 1.1: Error between numerical (exact) solution and approximated one

must be consistently applied with all its implications also when not intuitive
equations are obtained.

In Appendix B all the topics concerning convergence, validity of the ex-
pansions, etc. are treated accurately. What is important to underline here
is that, inside the boundaries which assure the correctness of the procedure
from the mathematical standpoint the results can be considered consistent
and this is what is assumed in what follows.

The same kind of process seen before can be applied to both ordinary and
partial differential equations, as the weakly nonlinear oscillator presented
in Appendix B. In case of problems in which the equation is an oscillator
sometimes a particular procedure must be applied, the so called multiple
scale approach (see again Appendix B), by means of which the behavior of
armonic solution could be captured. In these cases the common procedure
would fail since the limit for periodic solutions does not exist in genral.

This perturbative approach will be used in the sequel for low—thrust orbit
propagation problems, since the perturbative acceleration can be considered
a small parameter, a zero—order solution for € is available, i.e. Keplerian
motion, and the availability of an approximated solution dependent on the
perturbative parameter can be hypothesized.
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1.3.3 Optimization Algorithms in Space Mission Anal-
ysis and Design

Finding an optimal solution is surely one of the major engineering goals:
once the objectives are chosen the solution being looked for is the one which
allow to maximize the performance index which is a quantity that measures
how well the solution reaches the imposed objectives.

There are a lot of optimization algorithms that has been developed specif-
ically for application to space mission analysis, the most important features
of which are reported in Appendix C with some technical discussions of the
main aspects. A brief outlook focused on the most relevant characteristic for
the objectives of the present work is outlined in this paragraph.

There are three families of optimization algorithms:

e Indirect Optimization Methods;
e Gradient—Based Optimization Methods;
e Evolutionary Methods.

Indirect Optimization Methods: when continous problems are dealth
with, optimality conditions can be derived once the boundaries and the dy-
namic model are assigned. These conditions are derived forcing to zero the
first order variation of the performance index, as it is done with the first
derivative i.e. stationary condition, but also a second variation condition
should be considered. In this way the problem does not need to be discretized
and the optimal solution is found without evaluating the performance index
directly, for this reason the name indirect. The problems are the dependence
of the optimal solution on the initial guess and the possibility of finding
sub-optimal solutions.

Gradient-Based Optimization Methods: continous problems are discretized,
a multiple shooting problem is formalized and the optimal solution is found
after a first guess (so also in this case the result is affected by this choice)
moving towards the direction in which the performance index is maximized,
this direction is found computing, by means of the perturbative approach,
the Jacobian matrix for the states, the controls and the constraints (Karush-
Khun-Tucker Equations) while the boundaries are usually treated with the
active set method (see Appendix C). Also for this method there is the prob-
lem of sub—optimal solutions.

Evolutionary Methods: also in this case continous problems needs to be
discretized, but while direct methods could support a big number of variables
the evolutionary ones cannot, usually they can deal with a small number of
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unknowns for work effectively. The search is performed in many different
ways, but all of them have one thing in common: they try to imitate the
nature behaviour. The principal ones are:

e Genetic Algorithms: natural evolution is emulated, a set of individu-
als (the set of possible solutions) are randomly initialized, then their
performance index is evaluated and a selection is performed taking this
quantity as discriminant between who is suitable for the given ambient
(the optimization problem) and who is not; after this selection the best
individuals are used to generate a new generation of solutions and the
algorithm is iterated until the value of a certain parameter (number of
iterations, increment of performance index, etc.) is matched (this stop
condition must be empirically fixed);

e Particle Swarm Optimization: this algorithm simulate fishes or birds
looking for food, a randomly initialized set of solution is created and
the individuals move in the domain of the problem. Their motion is
assumed to be similar to the one adopted by a flock of animals when
looking for food;

e Differential Evolution: also this method simulate the evolution, a ran-
domly generated set of solutions is created but in this case the new
population is created adding to the best individuals a component pro-
portional to the difference between other two (or more than two) indi-
viduals.

Since the initialization is done randomly and the search method is not based
on standard optimality conditions these methods should provide a better
exploitation of the search space, but there is no proof of convergence.

1.4 Application of Perturbative Expansion to
Low—Thrust Trajectory Arcs
From what it has been said before one could recognize two different trends:

1. low thrust (high I,,) adoption as principal thrust supplier in interplan-
etary missions in order to save fuel,

2. deeper, more detailed and more effective optimization which can allow
to reach in less time a more accurate globally optimal solution.

12



These are two requests which it is hard to accomplish togheter, in fact the
introduction of low thrust in the equations of motion for a spacecraft make
the system more complex fromt the orbit propagation point of view, so a
higher computational cost must be added to the optimization process which
become slower and less accurate respect to the case of chemical propulsion
systems.

With this prospective the objective of this work it has been to look for
some sufficiently accurate analytical approximations for the description of low
thrust trajectory arcs and to demonstrate how to use this result in potentially
more efficient optimization methods.

In particular for obtaining the analytical approximations two different
methods has been developed:

e Method 1: starting from an application of the multiple scale pertur-
bative approach found in the literature dealing with the motion of a
spacecraft under the influence of a small drag force [11] and adapting
the two dimensional equations of motion to the case of small acce-
laration, a first analytical result is obtained; the relations are able to
describe the bidimensional motion and to capture only the secular vari-
ation for the orbital elements;

e Method 2: in order to obtain a simple three dimensional description
of motion under low—thrust, Gauss’s variational equations have been
solved with a perturbative method, introducing the adimensionalized
low thrust acceleration as perturbation parameter ¢ < 1 and looking
for a first order accurate solution.

A similar search for analytical solutions of low—thrust trajectory arcs has
been already proposed in the literature. In some cases a particular trajectory
shape is assumed, evaluating the correspondent thrust profile which exactly
procuduce that trajectory [25], [15]. In other sudies the trajectory is derived
without imposing a particular shape, trying to make the method as indipen-
dent as possible from the particular thrust profile considered [18], [20].

In order to have an idea of the precision of the approximation derived
with the perturbative approach presented in this thesis, a comparison with
a method based on a Fourier series expansion [18] is presented in the results
section. This method first mediates on one period Gauss’s equations and
obtains a mean rate of change for each orbital parameter, then evaluates the
Fourier expansion for the given control profile and finally substitute it in
the mediated equations; the analytical expression derived depends only on a
small number of Fourier expansion coefficients.

13



As to the author’s knowledge, a perturbation method was applied only
in one case [7], for the approximation of the Hamiltonian H which derives
from the classical formulation of the indirect optimization approach. In this
respect, the novelty of the approach here developed lies in

e the possibility of propagating orbits under low—thrust propulsion with
a very limited computational burden;

e the ability of the method in capturing the most relevant physical fea-
tures of the perturbed solution;

e the derivation of simple criteria for evaluating the maximum arc length
that results into an acceptable error;

e the availability of a simple low—thrust orbit discretization process suit-
able for applications in the framework of Direct Optimization Methods.

The most important limits of this method are

e the applicability of the expansions is limited to the space where the
ratio between the thrust and the gravitational acceleration is smaller
than 1;

e the error control requires to limit the maximum trajectory arc length,
depending on the value of € which in some case of practical interest
could become equal to 107};

A preliminary application in the frame of Direct Optimization Methods
has been outlined,in order to demonstrate the last point but it must be un-
derlined that also for the evolutionary ones this analytical approximation
could provide a significant improvement, spreading the set of possible prob-
lems which can be treated with them: if a big arc of low thrust trajectory
can be solved analitically, the variables number for describing a low thrust
transfer could become suitable for application of evolutionary algorithms.

As said before, Direct optimization methods transform the optimization
problem into a multiple shooting problem: first of all, once initial and final
states are given, intermediate values for the states and the controls must be
choosen, in the very first run this is done without any kind of mathematical
indication but only by means of the user ability and experience. The number
of intermediate values depends on the accuracy required but it must be no-
ticed that the number of variables is directly proportional to that quantity,
so it cannot be too big in order to make the computation feasible. Besides
the contrains on initial and final points and for values independent of the
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trajectory and the discretization (e.g. limit on maximum thrust), another
set of contrains must be enforced and these are the matching conditions at
the interfaces for the sub arcs between the intermediate points, since the val-
ues are chosen indipendently for the various points and, in general the final
point of one arc do not coincide with the initial one on the following.

The analytical approximations can be introduced for evaluating the tra-
jectory in each sub arc instead of more computationally demanding numerical
integration scheme and this is the most direct application. Since also the time
of flight is evaluated analytically, also the Jacobian Matrix could be evalu-
ated analytically by means of Automatic Differentiation, with a significant
reduction of computational time. Obviously the results of the optimization
process will be affected by the approximation inherent in the perturbation
epxpansion but this approach could be used in order to identify a good first
guess for a fully numerical optimization method.

The boudaries/limits of the reserch has been chosen to be

e restricted two body problem, all the perturbations (drag, solar radia-
tion pressure, planet asphericity, etc.) are neglected;

e constant thrust magnitude and direction for deriving the analytical
approximations for the motion.

A radial-transverse-normal reference frame for the thrust components
will be assumed;

The results would be used to find a good initial guess for a direct method,
so that the restricted two body assumption could be considered good in this
preliminary phase and it justify the consideration of only gravitational force;
in addition the direct method automatically discretized the trajectory and the
thrust magnitude and direction, i.e. control variables, are assumed constant
in each, small, arch; so that these limitations are not so influent.

1.5 Thesis Structure

After this introduction, in Chapter Two is presented the core of the whole
work: the theorical instruments are applied in real systems and a set of
analytical approximations for describing the motion of a spacecraft under the
influence of a small perturbation are derived; a possible application of these
equations to Direct Optimization Methods by the use of Direct Transcription
is reported in the last section. In Chapter Three the results are presented and
in Chapter Four some conclusive remarks are reported. In Appendix A some
fundamentals aspects of Space Flight Dynamics are recalled, in Appendix B
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there are some basic concepts of Perturbation Methods and in Appendix C
a general overview of Optimization Methods is outlined.
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Chapter 2

Perturbation Methods on
Orbital Parameters Variation

In this chapter the search for analytical relations for low—thrust trajectory
arcs by means of the perturbative approach is performed. The two methods
briefly outlined in the introduction are here applied to orbital problems: a
two scale perturbation approach is developed first and the method based on
standard perturbation follows. The results are two different set of relations:

e The first one, obtained by means of the two scale method, is able
to capture the secular variation (long period terms) of three orbital
parameters (a, e and w), since the solution for the perturbative term is
available only for the planar case;

e The second set of equations, obtained by means of a standard pertur-
bation approach, is able to capture both the secular variation and the
short period one for all the six orbit parameters, so it is a fully three di-
mensional formulation, and since it has been derived for the equinotial
elements it is not affected by any kind of singularity.

Both results provide a new insight in the problem of the description of the
behaviour of a spacecraft under the action of a low—thrust propulsion system.
The second approach, in particular, represents a fully general method that
can lend itself to be used as a novel orbit propagation method, also in the
framework of low—thrust orbit transfer optimization problems, as it will be
shown at the end of the next chapter.
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2.1 Two Scale Perturbation

The classical example used for describing the two scale perturbation method
is, as discussed in more details in Appendix B, the weakly nonlinear oscillator.
It has been shown that is characterized by two different time scales and a
particular approach is needed in order to capture the whole motion composed
by the sum of the motions in these two different scales.

In nature there are a lot of examples of weakly nonlinear oscillators,
in particular, as far as space flight mechanics problems are concerned, an
interesting one is presented in [11]: the motion of a satellite moving under
the influence of a primary body (i.e. a simple two body problem) affected
by an elementary model of atmospheric drag (p = cost and D = f(V?),
D || V). It can be shown that the resulting dynamics can be rappresented
as a weakly nonlinear oscillator, if a 2D description of the motion is adopted,
the orbit plane not being affected by drag which is an in—plane force.

Three dimensional examples are described in [12] and in [13], where a
satellite moving around an oblate planet and in a restricted three-body prob-
lem is considered respectively. In both cases, the motion can be rappresented
as a multi degree—of—freedom weakly nonlinear oscillator.

In what follows only the two—dimensional case will be addressed.

2.1.1 Thrust along Velocity Direction

s>
Hy

D>

>

Figure 2.1: Thrust orientation

For the planar motion the equations are similar to those which describe
a satellite affected by drag reported in [11]. The relations differ for the sign
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changed from minus to plus in order to take into account the thrust instead
of the drag; this change does not allow for directly finding the equations for
the orbital parameters because of the nonlinearity of the problem. Thus, the
equations are

d’R do\ > GMm
m W_R(d_T> = g Thh
20  dR d
m(Rﬁ—FQd—Td—T) = F0f2

Scaling all the quantities with respect to a reference length L,.; = Ry and a
reference time Ty = (L3/GM)'/? one obtains the following pair of coupled,
second order ordinary differential equations

. 1 .
R ] (AAN)
r
r0+210 = cfy <7’,9,7’",9>
where € = Fy/(GmM/L?) < 1. Assuming that thrust acts along the veloc-

ity direction, the thrust vector can be decomposed in the radial transverse
directions as follows:

Fofi =Tsiny; Fyfo =T cosy
with
dR/dT
RdO/dT

Since the velocity can be computed as

dR\* [ do\’
() + (i)

the equations of motion can be rewritten in dimensionless variables as

tany =

1/2
V=

. 1 &
Forf? = ——t¢ L

2 N1/2
r (7:2 + 7,292)
rd

‘ N 12
(r2 + 7“292)

rf+20 = ¢
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A more convenient form of the equations is obtained substituting the new
variables u(f,¢) and t(0,e) where v = 1/r and letting ' = d/df. With
application chain rule,

d d ag d 1

£(°)— @(')@-@(');

one obtains )

. u
r o= _t/u2
) u (th/), o u”u2t’
T ey
t (tu?)?

. 1
b = -

t
. t//
0 = ——

t/3

and the equations of motion become
ul
v +u—utt? = —eutt”? <f1 + —fz)
U

(W) = —cudt®f,

Assuming that thrust is aligned with the velocity direction, the functions f;
and fy are given by

7;
" )"
f = r

. N1/2
(7;2 + 7a292)
When expressed in terms of the new variables

ul

(W2 + u?)1/2
u

(W2 + u2)1/2

o= -
fo =
one gets the following formulation for the equations of motion:

W ru—utt? = 0

utt (2.1)

24
(u’t') = 8(U12+U2)1/2
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Without loss of generality the initial conditions can be chosen as

/

u (0;¢e

w(0ie) = 1;
t(0;e) = 0;

W (0e) = 0
(0;¢)

where o is the reciprocal of the initial angular velocity, which must lie in the
interval 2712 < ¢ < 1 [11]'. These equations do not depend directly on ¢,
and a two scale approximation can be introduced for the two functions u and
t' following the preocedure proposed in [11]? for the atmospheric drag case:

u(B;e) = wup(0;9) +cuy (6;9) + ...
t(0;e) = wvo(6;9)+evy (6;9) + ...

where 1 = €. The system thus becomes
u +u—utt? = 0

(u? + u?) (th/)/ = e (uMP) (W2 + u2)1/2

For the zero order terms it is

0%u _ 4,2
502 T U0 = UgVp
2 Jug Jug _
u0—89 + 2%0—89 Vg = 0

and the system solution is given by

ug (0;9) = X = p*(1+ecos(f—w))

T

vo (6;9) = = p3(1+ecos (H—W))_2

1
6

obviously identical to the one reported in [11].

1p. 329.
2p. 330.
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For the first—order terms it is necessary to subsitute the first derivatives
of u and v which can be expressed as

W = aUO I (8u1 X 611,0)

a0 "\ o0 T av
;o (91)0 81;1 61}0
U= W“(Ww—ﬁ)

After some algebraic manipulations, the following equations are obtained:

0%u 0%u
W; U = _209&?9 + 2uguovy + 4uu, vl
61}1 61}0 8u0
% <W + %) +2uto gy
dvg Oy du;  duy ugvy
2 — 4+ — — 4+ — = —
+uo{u186+80v1+vo(69+89 a2 NE
((5)" + )
(2.2)
The second equation can be written as
o ( 4 Uy 0 5 ugvy
- 2p— — = 2.3
o0 (uovl + puo) + o0 (UOUO) 5 T 2 ( )
\/ UO + 50

Introducing the partial derivatives

Oug 201 o

59 = P [—esin (6 — w)]

a'UO -3 -3 ]

29 P [2 [1+ecos (0 —w)| “esin (0 — w)}

and modifing the second term on the left side as

1
— (v +2pﬂ> +p =—
90 ( 071 o PP [1 + ecos (H—w)]2 [1—|—e2+26008(9—w)]1/2

a Taylor series expansion of the right side term can be considered
-1
- {[1 +ecos (0 — w)]? [1+¢e” +2ecos(d — w)] 1/2} =~ 3ecos (0 — w)—1+0 (€?)

so that Eq. (2.3) can be rewritten in the form

0

1
Z w2 +2p 2 ) +p = — 6—w)—1
50 <u0v1—|— puO +p P (3ecos (0 —w) — 1)
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which can be integrated once with respect to 6:
1
udvy + Qp% +p'0— ] (3esin (0 — w) — 0) = g1 (V) + O (€?)
0
The first equation in (2.2) can be rewritten as

82114 82UQ Ui
902 +up = —2—— + 2udv (ugvr + 2pu—0 (2.4)

0000

and the last term can be found from the equation (2.4), so, since

0 8u0 N . ;9
%(80) — (¢'p* + 2epp’) sin (6 — w) + w'ep? cos (6 — w)

and 2udvy = 2p, Eq (2.4) becomes

0%y Oe 8p be 5 Ow
Z - - — 9ep? ==
02 + uq (Zp + dep— ) sin (0 — w) ep* == cos (0 —w)+

op 1
— 2(819 >9+2pg1

The secular term vanishes provided that the following conditions are satisfied:

Ow
oV

=0= w = cost = wy

,0e  4dep Ge _ 5 Oe 2e _

Oe ov /
?:M—%:>6:€041—4a(2)58

It must be underlined that the final relations derived for the orbital pa-
rameters evolution are different from the relations derived in the drag case,
and this difference is not a simple sign change. This is a direct consequence
of the nonlinearity of the system.

that is
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o2t
1 1 1 1 1 1 J
0 5 10 15 20 25 30 35
T
0.105
04 A NP B
0.095 1 1 1 1 L 1 J
0 5 10 15 20 25 30 35
T
1 —
§ “‘. ) ““v-.," . iere,, "‘. R “‘..vn... R
E 0 3y o kY > kY kY R 2 st
3
_1 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35
T
Figure 2.2: Thrust along Velocity, (¢ = 1073)
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2.1.2 Constant low—thrust case
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Figure 2.3: Thrust orientation

If a thrust vector along a fixed direction with respect to the radial-
transversal reference system is assumed, where « is the angle between thrust

and transversal direction, it can be decomposed as

Fofi =Tsina; Fyfs =T cosa
The equations of motion in dimensionless form are given by
. 12 1 .
P—rf* = —— +esina
r

ré—l—27”9 = gcosw

Following similar steps to those presented for the athmospheric drag case

the following relation was obtained

2
O = —2[— (¢'p* + 2epp’) sin (0 — w) + w'ep® cos (0 — w)] +

+ 2 [—p’@ — C(;S;l (0 —3esin (0 —w)) + g1 (79)} +

[ esin (f —w)cosa
pPl+ecos(@—w)® p2[l+ecos(d—w)

sin a }

(2.5)
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Introducing the following Taylor series

[1;8225()9_3)}3 = esin(f —w) + O (¢?)

—m >~ 2ccos(f —w)—1+ O (e?)

Eq (2.5) becomes

2
au1+u1 = (2p2%+4epg—§+kcosa>sin(@—w)+

00? oY p?
2
- (—26}72(;—;) + p—ssin a) cos (0 — w) +
Jdp cosa sin «v
+ 2p <_8_19 T > 0 — o + 2pg

Again, making the secular terms vanish one gets

0 1
p3—p :—cosaéa:ao\/

o0 1 — 4 cos aaed
Ow  sina
o9 p
w = mem (o) if a3
: — COSOL(IUE
w = aich if a=7%

0 4 7 0 3
2p28—g—%cosa—i—p—icosa:Qan—;%—p—scosa:O
0 3 09 3
Z = Zcosa = e =¢o (1 —4cosaaied)®

e 2 4cos ) — p§

It must be underlined that these expansions work both forward and back-
ward in angular position, simply adding the minus sign inside the value of
9.

In what follows are reported three figures (2.4, 2.5 and 2.6) for three
different thrust orientation angles. The approximation is compared with
an accurate numerical solution, as can be seen the results are qualitatively
similar for the different thrust orientation. The analytical approximation is
not able to capture the short term variation but the secular trend is catched
quite accurately.
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Figure 2.4: a =0 deg, (¢ = 1077)
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Figure 2.5: a = 30 deg, (¢ = 1073)
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Figure 2.6: o = 60 deg, (¢ = 1073)
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2.2 Standard Perturbation

2.2.1 Classical Parameter Formulation

For these analysis a constant thrust T is assumed, its orientation with respect
to the radial direction 7, the trasverse one 6 and normal to the orbit plane
w is defined by means of the following angles: « between the radial direction
and the projection of the thrust vector on the 7 — 0 plane, and [ between
the thrust vector and the 7 — 6 plane (cf. fig 2.7). With this decomposition

s>
-3¢
My

Figure 2.7: Thrust orientation

one can define the following quantities:
T, =Tsinp; T, =Tcospcosa; Typ="Tcospsina

Thrust magnitude is made non—dimensional scaling it respect to the vechicle
weight um/r?, that is a perturbation parameter

T

£=——
pum/r?

can be defined, which can be obviously seen as the ratio between the acceler-
ation caused by thrust and that caused by the gravitational attraction . The
semimajor axis ag of the initial orbit will be assumed as the reference length,
while a mass parameter p = 1 is also assumed, such that the orbit period in
non—dimensional terms is 7 = 27 and the following derivation is indipendent
of the particular celestial body considered.
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Considering now Gauss’s equations for variation of orbit parameters (re-
ported in Appendix A)

dQ  rsin(v+w)

dt hsint

di rcos (V+ w)

e

dw 1 . ds} .
% = e [—pcosva, + (p+ r)sinvag| — — cosi
da 2a? . p

% = T (e sinva, + ;ag)

de 1 :

% = 3 {psinva, +[(p+1)cosv +re|ap}
% = n+ = [(pcosv —2re)a, — (p+ r)sinvay)

where the acceleration components a;, ¢ = w,r, 6 can be replaced by the
corresponding terms produced by the low—thrust propulsion system that is
a; = T;/m.

Replacing derivation with respecto to time with derivation with respect
to the true anomaly by application of the chain rule

d ddv N d d1

dt  dvdt " dv  dtv
one can rewrite the system of first order ordinary differential equations as
follows:

dQ rdsin (v +w) .
dv h2sing o p
di rdcos(v+w) .
o %6 sin 3
dw 7“2[ 5 +(ptr)si 5]dQ .
— = — [—pcosvecos[cosa r) sin ve cos fsin ] — — cosi
dv h2e ! P c P c dv
d 2 2.2
fa_ra <€SiHV€COSﬁCOSO&+ESCOSBSiHOz)
dv h? r
de re .
= ﬁ{psmyecosﬁcosa+ [(p+7)cosv +re|ecos Bsina}
dM 2 Japr?
= a;a—p + ahze [(pcosv — 2re)ecos fcosa — (p+ r)sinve cos [ sin q
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where the quantities

b
h2
n
v
are used.
Then, introducing
T g
p g
h? =

~ Jpa
= PH

= h/ab
= h/r?
N
[1+ ecosv]
a(l—e?)
p

w
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in the last system, it becomes

dQ 2(1 - ¢?)*si
e _ (1—¢) Smgyl—ﬂf})esinﬁ
dv [1+ ecos (v)]”sini
di 2 1— 242
di _a (1—¢€%) COS(V;Lw)asinﬁ
dv [1+ ecos(v)]
d, 1—e?
d_c: — 1+2th[ (1—e)cosuscosﬁcosoz—|—
Q
+ 1—e sin ve cos 3 sin « —d—cosi
1—|—ecosy] dv
da )
= [1+ecosu] 5 (esinve cos B cosa+ [1 4 ecos V] € cos fsin «)
de a(l—e?) 2\ .
— = —— 5 1a(l—e¢")sinvecos [ cosa+
dv [1+ecosy]2{ ( ) ’
1
- (14—
+ {a( e)< +[1+6COSV])COSV+
ae(l — e?) :

+ m] ecosﬁslna}
dM V1—e? \/1—62 (1—e?) [ (1 2)><
. a(l—e
dv [1+ ecos 1/] e[l + ecosv]?

X 2 o4 +

cosy — ———— | ecos f cos
[1+ ecosv]

1
— a (1 — 62) (1 + m) sinyacosﬁsina]

At this point the next step is to introduce the perturbative expansions for
all the orbital parameters and to substitute these relations into the differential
equation system. The expansions are truncated to first—order terms, so they
are written as

a = ag+eEa
e = ey+ee;
1 = io + €iq
W = Wwp+Ew;
Q = Qo + EQl

M = M0+€M1
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Introducing them into the previous differential equation system (the sym-
bol ’ denote the derivation with respect to v) and expressing only those
factors that give rise to first—order terms one obtains

2 .
O 4y — at (1 —e?) Sln(y+w0)esin6
0 ! [1 4 g cos (v)]* sin g
2
P az (1 —e2) cos (v + wo)esinﬁ
0 ! [1 4 egcos (v)]?
ap (1 — e?
wh+ew) = 7 +0€(0 — ,/0])2 - [—ao (1 — €) cos ve cos 3 cos a+

1-e) 14+ ————
+ aol 60)( +[1+eocosy]

) sin ve cos [ sin a} +
—  Qf cosiy — Q) cos iy

ap+eay = M (€ sin ve cos B cos a + [1 + ey cos ] € cos [ sin )
0 b [1+ eo cos v]? ° ’

ep +ee] = M {a (1 — 62) sin ve cos 3 cos o +
0 Y 14 egcosy)? ° 0

+ {ao(l —e?) <1+[;> COSV+M1 €Cosﬁsina}

1+ egcos v [1 + e cos V]
V1= 2 1 — e2)3/2 9
Mj+eM] = ¢ 5+ a (1~ €)) 5 [ao (1—€p) (COSV— L) X
[1+ecosv]” eyl + epcosv] [1 + e cos V]
X ecosfBeosa—ag(l—ed) <l+m> sinuscosﬁsina]

One can note that, similarly to what will be shown in details for equinotial
elements, once v is known the information given by the last quantity M is
redudant, i.e. not stricly necessary for defining vehicle position. This fact
apparently allows one to ignore one equation with no loss of information, but
this is not the case: another equation is needed to close the system in time,
which si derived from that used to perform the change in derivation variable
by means of the chain rule, that is:

With this strategy, one change the focus from time as indipendent variable
to v, so it is for this reason that the equation for M is apparently not needed
anymore, but, in doing this, time becomes a dipendent variable, and an
equation is needed for evaluating it. Using the previous relation and the
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previous defined quantities (expressed as functions of v) one can write

dt r? p?

v h hu (14 ecosv)?

which is an equation similar to the others, where one can introduce an ap-
proximate perturbative expansion for the time:

t =1y + ety

Upon substitution, one can obtain the perturbed variation of time, that will
be derived later in the chapter.
Solving for the terms of zero order one obtain

apg = Qg
ey = €
io = EO
Wop = Wo
QO = Q0

Y 1
RN ey
w |1+ egcosy]

where the values with an overbar are referred to quantities assigned at the
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initial time ¢y. For the first—order terms one gets

2 2\2 . v
0, - % (1 —ef) sinp sin v cos v
1 = — COS Wy 3 T sin wy —_—
SN 29 [1 + eg cos v]? [1+ egcos V]
V
. 2 . cos v sin v
i o= ag (1 —ep) sinf3 coswo/ — smwO/ —
[1 + egcos v]® 1+ egcosv]

a2 (1 — e2)? cos B cos o / Ccos v
[

2
€o 1+ egcos v

N a2 (1 —e2)? cos Bsin [/” sin v +/” sin v }
€o w [L4+egcosv]® oy [1+egcosv]’

— (29 — Qy,) cosi0

v .
a = 2a (1—eg)eocosﬁcosoz/ [ Y

2
v |1+ egcosv]

. v 1
+ 2a (1—6(2))cosﬁsma/yom
5 2\ 2 v sin v
er = agll—ep) cosfceosa —+
' o 0 p /y [1+ egcos ]

T ag(l_eg)zcosgsma[/ ey _%
vo |1+ egcosv] v |1+ egcosv]

v 1
+ a%(l—e?)%e cosﬂsina/
ol o) e [1+ eo cos ]’

The last term is a bit trickier than the other ones as in this latter case one
must take into account also possible first—order terms that derive from the
zero order term, when substituting the perturbative expansions into it. In
particular the zero order term becomes

V1 - (e +cer)?

[1+ (e + cey) cos v]?
er (e2 —2) cos v e1eo 1

— =0 (e
1—e2 [1+eocosv]’  /1T—e2[1+eocosv]’ ©
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so that

2 215/2 v
as(l—e Ccos vV
M, = Mcosﬁcosa/

€o v [1+ e cosv]?
v 1
— 2a2 (1 —é? 5/2(208600804/ e
o 0 v [1+ egcosv]’

a1l - e2)? cos fsin v sin v " sin v
i 2 3
€o v |1+ egcosv] v [1+ egcosv]

(e2er — 2¢1) /” cos v _ eoer v 1
w [1+ecosv]’  /1T—e2 v [1+egcosv)

+

Noting that

sin (v + wo) sin v cos wg + cos v sin wy

[1 4 e cosv]® [1 4 egcos ]’
cos (v + wp) COS V sin wp — sin v cos wy
]

3

[1+ egcosv [1+ egcosv]®

the complete solution of the problem requires the solution of following inte-
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grals

/ sin v v

[1 + e cos V]
/ sin v v

[1 + e cos V]

1
[t
[1+ egcosv]

1
[
[1 + e cosv]

1
J——
[1 + e cosv]

cos v
[ a
[1 + e cos V]

cos v
/ LA
[1 4+ egcosv]

1

eo (1 + egcosv)
1

2eq (1 + eg cos v)?

2 arctan Zegsiny 3
1 2eq cos V—&-(\/l—eo—i—\/l—ﬁ—eo)

1—e3 V1—é

2eq sin v

2eq cos l/—i-(\/l eo +\/1+eo)2

(1- 30)3/2
e Sin v v

(€3 —1)(1+ecosv) - (1—e2)%?

1 _ 3 o
(A=) (1-e})”

2egsinv
2eq cos v + g\/l —eo—i—\/eo—i- )
epsinv (3eg cosv — v n 3v
2(e2 — 1) (1 + e cos 1/)2 9 (1-— 60)3/2 2(1- 60)5/2

2 2
— X
eo(L—ef)™” eny/1- 63)

2eqgsinv
arctan +
2€OCOSIJ+<\/1—60+\/€0+ )
sin v v

+
(I—ef) (L+epcosv) eg\/T—ef eo(l—e2)*?
ed + 2 2 y
eo(1—e})”” eo(1—e)™?

2eg sinv
arctan 5 |+
2eq COS U + (\/1 — e+ e+ 1)
sinv (e (2¢2 + 1) cosv + €2 + 2)

2(e2 —1)* (1 + egcosv)®
v v

2e0 (1 —€2)*?  2¢ (1 — €2)*/?

arctan

_l_

If one does not want to solve completely the integrals, which is comptuta-
tionally expensive, a Taylor series expansion with respect to eccentricity e
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could be adopted, if low eccentricity orbits are dealt with. A first—order se-
ries results in an acceptable approximation if e is sufficiently small. A set of
possible expansions is reported in the last section of this paragraph.

The Taylor series for the previous integrals are proposed in what follows

sin (v + w,
(—+0)3 =~ sin (v 4 wp) (1 — 3egcosv) + O (ef)
[1+ egcos V]
cos (Vv + wy) 9
T o con o >~ cos (v 4 wp) (1 — 3egcosv) + O (ef)
[1+ e cos v

cos v

I

_— cosv — 2eqcos’ v + O (e?
[1+ eg cos ] ° (<o)
sin v

m & ginv — 2egsinvcosv + O (6(2))
D—k:(l—ci)sy]:s >~ sinv — 3egsinveosv + O (6(2))
m >~ 1 —epcosv+ O (e])
= s s +0()
m ~ 1—3eocosu+0(€(2))
[14—82—503y] >~ sinv —epsinveosv + O (ef)

In order to obtain a formulation valid for thrust components projected
along the velocity-normal frame, one can transform Gauss’s equations by
means of a rotation matrix that transforms the vectors expressed with respect
to # — O into frame components expressed with respect to the direction of
the velocity and in—plane normal direction unit vectors:

Qgr h esinv —(1+ecosv) Qg

ade pv | 1+ecosv esinv Adn

thus obtaining the equations reported in [2]. Expressing v as a funtion of the
orbit parameters one can apply the same perturbative technique.

2.2.2 Equinocial Orbital Parameters Formulation

In order to obtain a nonsingular formulation, the perturbation approach will
now be applied to the modified equinocial orbit parameters. Given the fol-
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lowing quantities
l
P =esinw Q= tanisinQ

)
Py =ecosw (o :tan§cosQ

with
w=04w l=w+M L=w+v;

the equations for the variation of equinocial parameters are

2 2
Z_? — % [(PQ sinL — PycosL)a, + ]—)ag}
r
dP, r p P\ . .
— = E{__COSLQT+ [P1+(1+—) smL] ag—PQ(QlcosL—Q2s1nL)aw}
r r
dP.
d_t2 = %{BsinLar—l— |:P2+ (1—1—]—?) cosL] ag + P, (QICOSL—QQSinL)CLw}
r r
dQ r .
dtl = 3 (1 + Q37 + Qg) sin La,,
dQ r
dt2 = o (1 + Q% + Qg) cos Lay,

dl r a , 2b
5 =" h{{a_{_b(1;))(PlslnL+chosL)—l—z}aT

a
a+b

(1 + ]—)> (PrcosL — Pysin L) ag + (Q1cos L — Qysin L) aw}
r

Here, again, it is possible to substitute the acceleration terms with thrust
components per unit mass and to express the derivative with respect to the
true longitude instead of time, according to the following relation

d d dL d d1

dt dL dt dL  dt [
It should be noted that ‘ .
L=Q+w+7v
so that, when the perturbative expansions truncated at the first—order is

used, one gets _ . '
LZQ0+8Ql +CDO+€CD1+D

Remembering that '
Q=0 w=0
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and neglecting higher order terms, one gets
. 1 r?
L=v = = = —
1 A

By making unse of the following relations

b=./pa, n=hjab, v =h/r?

the equations can be rewritten as

d 2 2.2
d_z = 22@ [(PZ sin L — Py cos L) € cos 3 cos a + Z—;E cos 3 sin a]
dP, 3
bl T_{—gcosLecosﬁcosajL [P1+<1+E> SinL]ecosﬁsina
dL h? r r
— Py(QrcosL — QysinL)esina}
dP. 3
@ _ ]_?SinLgcosﬁcosa+[P2+(1+£) cosL}ecosBsina
dL h? Ur r
+ P (Qrcos L —QqsinL)esinf}
dQl 7"3 . .
= @(14—@%—1—@%) sin Le sin 3
dQs r? .
= W(l+@f—|—@§) cos Le sin 3
dl r’n 3 a p .
= T—ﬁ{{a_i_b(;)(PlslnL—l—PQCOSL)—F
2b a P ) .
+ — ecosﬁcosa—l——<1+—> (P cos L — Pysin L) € cos B sin a+
a a+b r

+ (Qicos L — Qysin L) esin f}

Introducing now the first order perturbative expansions for all the relevant
quantities, the equinoctial elements are expressed as

a = ag+Eea
P, = Pyo+ePn
Py = Py+ePy
Q1 = Quo+eQu
Q2 = Qo +eQu

Il = ly+el
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Given the following variables

po = ao[l — (P + P3)] ho = /Po

substituting these quantities in the previous system it is possible to express
those terms that give rise to first-order perturbative terms, provided that
the following quantities are introduced:

h p

,
S P P snl P I
h o pu(l+ PsinL+ PycosL) r + [y sin L+ [ €OS
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Collecting the terms, one obtains the following equations:

sin L
ah +eal = e<2h2a? cos B cos a [P ( ) +
0 ! { 070 B 20 (1—|—P1()SiIlL+P2()COSL>2

_ P ( cos L )]
0 (1+P108111L+P20008L)2
1
+ 2h§agcosﬁsina{ ]}

(1—|—P108inL+P20COSL)
cos L

; 5T
(1+ Pygsin L + Pyycos L)
1

Pl,+¢eP], = 5{—h§cosﬂcosa

+ hiPycos Bsina +
oo cos (14 Pyosin L + Py cos L)?

sin L n
(14 Pigsin L + Py cos L)®

sin L N
(1 —|—P1051HL—|—P20COSL)2

cos L
— hiP sin +
0 20@10 5(1 +P10 sinL+P20 COS[J)3

sin L
+ hiP sin }
0 20@20 5(1 +P10 sinL+P20 COSL)3

+  hgcos Bsina

+  hgcos Bsin

sin L
, 3T
(1+P1()SIHL+P2()COSL)
1

Pl +ePy, = 5{hécosﬂcosoz

+ héPgo cos 3 sin «

; 3t
(1+P1081HL+P20COSL)
cos L

(1 + Pl()SiHL + PQ()COSL)3
cos L

+
(1—|—P1081HL+P20COSL)2

cos L
+ hiP sin +
0 10@10 5(1 +P10 SinL+P20 COSI/)3

sin L
— WP sin }
0F10Q05in 5 (1 + Pypsin L + Py cos L)3

+  hgcos Bsina

+  hgcos Bsin

hi sin L
Lo+ eQ), = 5{—0 14 Q2% + Q?) sin }
10+ 0n 2 ( @ Qz) ﬁ(1+PmsinL—|—PgocosL)3

h cos L
o +e@h, = 8{—0 14+ Q% + Q?) sin }
20 +€Q 2 ( @ QQ) ﬁ(1+PlosinL+P20cosL)3

where the symbol ” denotes the derivation with respect to L.
Again, for the last term there are contributions to the first—order term
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from the zero—order one when substituting the perturbative expansions into
it. In particular it becomes

(1 - ((Pm + 5P11)2 + (Py + g]321)2))3/2

(1 + (PIO + &TPH) sin L + (PQ(] + EPgl) COS L)2
= —\/1 = Py = P [(3PuPioPoo — Po (2P — Py, — 2))

cos L 1
% (1+P1o sin L+Pao cos L)3 +3 <P10P11 T P21P20) (14 Py sin L+ Pag cos L)3

sin L
+ (P10 <P120 -2 (P220 — 1)) + 3P10P20P21) (1+ Prosin zl—i— Py o5 L)3 =0 (e)
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so that

lh+ely =

_|_

+

hg 1
+
ay/aoppo (1 4+ Pygsin L + Py cos L)2

éj{_héagcosﬁcosoz <P10( sin L

_|_
ao + +/@opPo 1+ Pypsin L + Py cos L)2
cos L
P20 A D) +
(14 Pygsin L + Pygcos L)
ha2./aopo cos 3 cos a 1 N
ag (1 4+ Pigsin L + Py cos L)3

hiag cos Bsin a cos L

PlO . 3 +

ap + /AoPo (14 Pygsin L + Pygcos L)

sin L
Py ; 3|+
(1 + PmsmL + PQ()COSL)
hgag cos (3 sin a ( cos L N
a0+ /@po  \ (1 + Pysin L + Py cos L)
sin L
1+ Pigsin L + Py cos L)2
cos L
h4 sin +
0 ﬁ(Q10<1+P108inL+P20COSL)3

0 sin L ) N
20 (1 4+ Pigsin L + Py cos L)3

\/1—P120—P220[(3P11P10P20—P21(2P120—P220—2))X

cos L
: 5+
(1+ Pypsin L + Pyycos L)

Py
(

1
3 (PioPri1 + Por P
( 104 2 20) (1+P1081HL+P20COSL)3
in L
Py (P — 2 (P3y — 1)) + 3Pio Py P — }}
( 10( 10 ( 20 )) 10520 21) (1_|_P10sinL+onCOSL)3

One can note that once L is known the information given by the last
quantity [ is redudant, i.e. not stricly necessary for defining vehicle position.
Exaclty as in the previous case, when perturbative expansion was applied
to classic orbit parameters, there is no loss of information only if time is
disregarded. Another equation is needed to close the system, if time is to be
evaluated. From the equation used to perform the change in derivation by
means of the chain rule



thus one can obtain a differential equation for time as a function of L:

dt  r? h?
—_— = — N 2 (2.6)
dL h  p(1+ PysinL + Pycos L)

which is similar to the other ones so that it can be approximated by means
of a perturbative expansion, where

t =1y + ety
Upon substitution of the expansion into Eq. (2.6) and collecting only the
zero and first—order terms, one obtains

1

(14 Pygsin L + Py cos L)’
6{2@0[2P120P21 —3P10P11P20 —P21 (P220+2)] —30/1P20(P120+P220 — 1) %

th+ety, = hy

2

cos L
X - 3T
(1 + P108111L+P20008L)
_ 2@0 [PIQOPH + 3P10P20P21 + 2P11 (1 — P220)] + 3&11P10 (P120 + PQQO - 1) %
2
sin L
X

_l’_
(14 Pigsin L + Py cos L)3
32% (PioPi1 + PaoPo1) + ani (P + Py — 1) y
2

1
(14 Pygsin L + Py cos L)

3}\/a0(1—P120—P220)

Solving for the zero—order terms one gets

ag = ap
Py = Py
Py = Py
Qo = Qo
Qan = Qu
_ hi
lo = lo+ C_l()\/—go_ﬁo I 12‘20
to = B} Iol7,



where the values with an overbar are referred to quantities assigned at the
initial time ¢y. Solving for the terms of order one one gets

: L
ay = 2hZa}cosBcosa | Py 32|L0—P10 C2|L0] + 2hgag cos Bsina Iy |},
Py = —hgcosfBcosa 1'02|L0 + hg Pyg cos Bsin 113|L0 + hg cos B sin a [83|1€0 +
. L : L - L
-+ hé COSBSIHO& ISQ|L0 — hépg()@lo SlIl/B IC3|L0 + héPQOQQO Slﬂﬁ IS3|L0
Py = hicosf Io|¥ + hiPyycos Bsina L)k + hicos Bsina Is|h +
b1 = hgcos Beosa Igl|) + hgPacos Bsina I, + hgcos Bsina L)

-+ hé COSBSiHOz ICQ|§0 -+ héplleo sinﬁ Icg|§0 — héPlOQQO Siﬂﬁ 133|£0

4 .
Qu = % (14 Q7+ Q3)sinf Is3|§0

4 .
Qo = % (14 Q7+ Q3)sinf ]c3|,€U

hiag cos 3 cos a I I
L, = -0 (P Lo|" + Py I, )+
1 a0 + v/aops 10 Lol + Pao Lea|f,

— hé sin 3 <Q10 1.03|§0 — Q2 Is3|£0)

hiag cos 3 sin a ( L L

_ Py Ls|* — Py I, ) +
P 10 Leslz, 50 Lsa| 7,
héao cos 3 sin « L I

- Py LolF — Py I ) n
G0 T /aope ( 10 Leal, 50 Lso| 7,

h$2./agpo cos 3 cos a
ap
+ (3P PPy — Py (2P} — Py — 2)) [c3|§0 +

113|20 —\/1— Py — P [3 (ProPr1 + Pa1 Py) ]13|£0 +

+ (Pl(] (P120 (P220 — 1)) + 3P10P20P21) Iss‘ﬁo]

. 2@0 2P10P21 3P10P11P20 — P21 (P220 =+ 2)] — 3a1P20 <P120 + P220 — 1) L
tl - 2 03|L0 +
B 2(1,0 P10P11—|—3P10P20P21—|—2P11(1—P220)]+3a11P10(P120+P220—1) IL i
9 s31Lg
gl ) o PP

Obviously the classical orbital parameters can be calculated with the follow-
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ing relations [2]

i
¢ = R ) - Q3
P Q

tanw = — tan2 =
Py Q2

For the system solution it must be introduced the following integrals (with
Pio, Py # 0, otherwise the solution become trivial)

_ cos L _
I = f(1+PmsinL+P20cosL)3dL—

3Po0 In | (/PR P —1—Pio) cos L+(Pao—1)sin L+ (y/PRy+P3,—1-Puo) |
- 5/2 +
2(P120+P220—1)
3Po0 In | (\/PFy+P3y— 1+ Pio ) cos L+(1— Poo) sin Lt (\/PE,+ P31+ Pio )| N
2(13120+1—"220—1)5/2
Pio( Pyt P2y Pao (2P3)+Pao—2)+Pao ( Py +4P3 —5P3)— Pao+1) ) cos? L

+ 2
2P30 (P2 +P2,~1)" (Pao—1)*(Pao cos L+Pyg sin L+1)*
n P2, cos L((2P2+2PZ)(2P3)+ P20—3) +2Pg)—4P5,+3P% —2P30+1) sin L+ Pio(2P2,+5P%,—5))
2
2Ps (P120+P220—1) (P20—1)2(P20 cos L+ Pjg sin L-|—1)2
n Pio( Piy(Pao+1)+4P2 Pao (P2~ 1)+ Pao (2Pg,—3P3, +2P3 —3Pao+2) ) sin® L n

2P30( P2+ P2 —1)” (Pao—1)? (Pag cos L+Pyo sin L+1)2
Poo (2P, +2P, (3P3)— P20—2) + Py —2P3)+3P3)—4P0+2) sin L
2Pao( P2+ P2 —1)" (Pao—1)? (Pag cos L+Pyo sin L+1)?
Pro( Piy+P2 Pao(2P3)—Pa0—2) +Pao ( Poy— P3y—5P3, +4P20+1))
2P0 (P120+P220—1)2(P20—1)2 (P30 cos L+Pyg sin L+1)?

— cos L _
102 - f (14 P1o sin L+ Pog cos L)3 dL =

Paotn[ (\/PEy+P3y—1-Pio) cos Lt(Poo—1) sin L+/ Py P3,—1—Pao]
(P2)+(Pao+1) (Pro—1)) >
Psgln [(\/W-i-ﬂo) cos L+(1—Pyo) sin L+\/W+Pm] N
(P2+(Pao+1) (Pro—1) )
P1oP>g cos L+<P120+P20—1) sin L+ P19 Pag
(I—on) (P120 +P220—1) (P20 cos L+ Pjg sin L+1)
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112

o+ 4+ 4

sin L _
f (1+P10 sin L+ P cos L)3 dL -
3P0 In | (/PR P3,—1+Pro) cos L+(1—Pao) sin L/ P+ P3y+Pro N
572
2(P2+P2-1)
3P0 In | (/PR P3,—1-Pio) cos L+(Pao—1) sin Lt/ P+ Py~ Pio] N
5/2
2(P2+P3-1)
(P2 (2P3)—2P20—1)+Pao ( P+ P3—Pao—1)) cos® L
2(17P20) <P120+P22071)2(P20 cos L+ Pjp sin L+1)2
cos L( Pro(2P2,—4P3,+3Pao+1) sin L+ (P2 —2(P3—1) ) (P20+1)) +
2(1- Pao) (P2 +P—1) " (Pao cos L+ Pio sin L+1)°
PZ2)(3(Pao—1)—P?) sin® L—Pio (2PZ,— P3,—3P30+4) sin L
2(1-Pao) (P2 +P,—1) " (Pao cos L+ Pio sin L+1)°
P120P20(1—2P20)—P§0+P230+3P220—P20—2
2(1—Pao) (P +P3,—1) " (Pao cos L+ Py sin L+1)°

j‘ sin L dL:

(1+P10 sin L+ Psg cos L)3

Proln[(y/PE+P3y—1-Pio) cos L+(Pao—1) sin L+/ Py + P3,—1—P) N
(Ph+P3-1)"""

Pro [ (\/ PR+ PRy~ 1+ Pro ) cos L+(1— Pao) sin Lt/ PFy + Py~ 1+ Pio] N
3/2
(PZ+P3—1)
(P20+1) cos L+ Pig sin L+ Pao+1
(P2y+P2y—1) (P20 cos L+Pig sin L+1)

dL =

1
f (14 P1o sin L+ Pag cos L)

In[(/PRy+P3—1-Pio) cos L+(Pao—1) sin L+++/PE,+ P~ 1 Pio) N
V/ PlotP5—1

ln[(\ /P120+P22071+P10) c0s L+(1—Pag) sin L+ /P120+P22071+P10]
VPR +P3 -1

1 _
f (14 Py sin L+ Pag cos L)2 dL =

ln[(m—ﬂo) cos L+(Pzo—1) sin L+\/W_PIO:|
(Pt PR—1)"" *
[ (/PR PRy Pia) on 1 Faosin oy PRy P
(P120+P220_1)3/2 -
Pro cos L+(P120+p20(p20_1)) sin L+ Py
(P120+P22071)(P20—1)(1+p10 sin L+ Pag cos L)
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1 _
f (14 Py sin L+ Pag cos L)3 dL =

(P2+P3y+2) n[ (y/PRy+P3y—1—Pio ) cos Lt (P3,—1) sin Lt/ PZ+ Py —1-Puo |
2(P120+P22071)5/2 +
(PZ+P3y+2) In[ (/PR + P31+ Pio ) cos L (1= P3,) sin Lt/ P2+ P, — 1+ Puo |
2(P2+P3—-1)"" +
Puo( Pio+P2 (3P~ Pao—1)+Pao (2P — P3)+P20—2) ) cos® L
2(P2+PZ—~1)"(Pao—1)(Pag cos L+Piosin L+1)?
cos L( (2P P2o+P3,(Pao—1)(2P3+5P20+3) +3P3 (P20—1)*) sin L)
2(P2+P3)~1)" (Pao—1)(Pag cos L+Pio sin L+1)?
cos L( Pro (P2, ( P3+1)+Psy+3P3—4))
2(P2+P3)~1)" (Pao—1)(Pag cos L+Pyo sin L+1)2
Pro(2Pfly+ P2y (Pao—1)(3Pa0+5)+Pao(Pao+4) (Pao—1)?) sin® L
2(P2+P3,~1)" (Pao—1)(Pao cos L+Pio sin L+1)2
(2P + P2, (1—Pao) (P2, —3Pag—8) — Pao(P20—1)*(P3,—4) ) sin L
2(P2)+P—1)" (Pao—1)?(Pao cos L+Pio sin L+1)°
Pro( P+ P2 (2P3,— Pao—2)+Pgy— P3)—2P3,—2P20+4)
2(P2+P3)—1)" (Pao—1)(Pao cos L+ Pyo sin L+1)2

Lz =

which must be calculated each time between L and L.
In case one wants to express the equations for a thrust vector parallel to
the velocity direction, simply note that, letting v be the flight path angle
rv 7

cosy = — siny = —
v v

and writing the velocity magnitude as

a
v \/2@(1+PlsinL+P2cosL) — h?

the direction « of thrust with respect to the transverse (horizontal) axis
equals the flight path angle, so that

cosy =sina sin7y = cosa
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Since 1 = 1 was assumed, when scaling times,

dr .
Lo dry
"T L
dr h*(PysinL — Pjcos L)
dL (1+ Pysin L + Pycos L)
i — D:(1+PlsinL+chOSL)2
E
. Pysin L — Pycos L
T =
h
. h (14 Pisin L+ Pycos L)
rv o= — =
r h

One thus obtains the following relations

Vva(Pysin L — Py cos L)

V2a (1 + Pysin L+ Pycos L) — h?
Va(l+ PyisinL + Pycos L)

V2a (1 + Pysin L+ Pycos L) — h?

cosa =

sinoe =

that can be substituted in the previous equations.

The integrals reported in the previous page do not allow for an analitical
solution, but they can be solved by means of a numerical quadrature scheme.

It must be underlined that these expansions work both forward and back-
ward in angular position, simply introducing a minus sign in the value of L
when computing the various quantities.

In the next three figures 2.8, 2.9 and 2.10 are reported three cases with
variable thrust orientation. In the first two pictures where the out of plane
angle [ is equal to zero the value of inclination ¢ and RAAN Q remains
constant, while in the last figure where the thrust is directed also out of the
plane they start to vary. In all the figures the perturbation is compared with
an accurate numerical solution, it is clear how standard perturbation is able
to capture both the short and long period terms. The parameters trends are
qualitatively similar, there is not a sharp change if the thrust orientation is
modified.
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Figure 2.8: Thrust orientation: o = 90 deg and 3 = 0 deg. ¢ = 1073
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Chapter 3

Error Analysis for Perturbative
Approximations of Low—Thrust
Trajectory Arcs

In this chapter the results obtained from the perturbative expansions devel-
oped in the previous chapter are presented and critically analyzed in terms
of prediction error and computational cost. In the first section the relation
between thrust order of magnitude and perturbation parameter ¢ is ana-
lyzed. Two settings has been considered: geocentric and heliocentric ones,
for different distances from the main body. In the next two sections, the ap-
proximations are compared with an accurate simulation performed by means
of Encke’s method and in the fourth one the accuracy in terms of perdiction
error is evaluated. In the fifth section, the first order perturbative analyt-
ical solution is compared with another analytical approach for propagating
orbital motion under low—thrust propulsion, based on a Fourier series expan-
sion [18]. In the sixth section there is the computational time analysis, while
, in the seventh one the use of the analytical expansions in the framework
of direct optimization is considered as a possible applicative scenario. The
results obtained from the approximations appear to be satisfactory provided
that trajectory arc angular length, Af, and values of the perturbation pa-
rameter, € = (T'/m)/(1/r?), remain compatible, that is for higher values of
e, a smaller arc must be adopted. Taking care of these limitations, the appli-
cation of the perturbative expansion to direct optimization methods appears
a promising tool as the results posted in the eighth section show.
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3.1 Case studies

Table 3.1 presents the list of case studies that will be considered in this
chapter as a test bench-mark for both perturbative expansions developed in
the previous chapter, namely, the multiple scale solution and the standard
perturbation approximation. As it will be discussed later in the chapter, the
error of the analytical approximations with respect to the numerical integra-
tion depends first of all on the value of the adimensionalized acceleration.
This is obvious, since it is assumed that the perturbation parameter is small
for finding a first order solution. In order to evaluate if the relations de-
veloped in the previous chapter are of any practical interest it is necessary
to consider their accuracy for parameter values within reasonable values for
practical realistic space missions. Six different settings are considered in Ta-
ble 3.1, three for a geocentric scenario (LEO, GEO and near—-Moon orbits)
and three for a heliocentric one, at a distance of 1 AU (near Earth), of 1.5
AU (near Mars) and at a distance of 5 AU (near Jupiter). The mass of the
vehicle is assumed to be of one ton. Reasonable values for the dimensionless
acceleration lie between 107! and 10™%, the corresponding low—thrust forces
needed for obtaining these values are reported in Table 3.1 for different test
cases. For the geocentric situations it is quite clear that for any realistic
value of electric propulsion thrust the resulting non—dimensional accelera-
tion would be less than 1072, For heliocentric trajectories also little values
of thrust, around 1072 N, can cause a dimensionless acceleration larger than
1072, if the near Jupiter case is considered. These aspects will be crucial in
the analysis of the results performed in the following paragraphs.

- _ I/m O(107Y) 0(1072) 01073 01074

R, T[N - - O(0) 0@
Geocentric  Rgpo T [N]  O(10) O(1 010" 0(107?)
Rytoon TN O(1)  O(107Y O(107%) O(1073)
1AU T[N O(1) O(0)) 007 007
Heliocentric 1.5AU T [N] O(107Y) O(107%) O(1073) -
5AU T I[N] O(107%) O(1073) - -

Case studies for a vehicle of mass m = 1000 kg.
Table 3.1: Thrust values for a given € in different scenraios.
After a discussion focused on the variation of orbit parameters reported
in the plots presented in par. 3.2 and 3.3, a detailed analysis on the er-

ror resulting from the perturbative expansion will be performed, with the
aim of identifying the maximum angular distance flown along a low—thrust
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trajectory that results in an acceptable error lever for a given value of the
perturbation parameter, i.e. the non—dimensional acceleration.

This analysis of the error is performed assuming different values of ¢
and evaluating orbit parameters after a prescribed angular travel, that can
be as large as 5 orbits when ¢ is below 1072, but is limited to few degrees
for 1071, These results will then be used for evaluating practical limits for
the use of the considered perturbative expansions in both the geocentric and
heliocentric cases, that is the maximum distance from the primary body taht
can be considered for a given set of vehicle parameters, thrust 7" and mass
m.

3.2 Two Scale Perturbation Results

In this section the results for the two scale approach are compared to an
accurate numerical solution found by means of Encke’s method. There are
two figures for each value of e: one for the trend of the parameters in time
and a second one reporting the variation of error with time. The formulation
is two—dimensional so only three plot per figure are reported: a, e and w.
Thrust orientation is defined by means of o the angle between thrust and the
trasversal direction. In figures from 3.1 to 3.8 trasversal thrust is assumed
(a =0) and € vary from 107 to 107!; the total travel length chosen for the
first two cases was of 5 orbits, while for the other two the arc length has been
chosen depending on the ¢ values.

For the case of trasversal thrust direction two figures rappresenting the
trajectory are reported, 3.13 and 3.16, where ¢ = 1073 and ¢ = 1072 re-
spectively. In addition the error variation, with respect to time, between the
radius calculated by the accurate numerical solution and the one obtained
by means of two scale method has been investigated for two e values: 1073
and 1072 (figs. 3.14, 3.15, 3.17 and 3.18). In figures 3.9 and 3.10 a case of
tangential thrust is presented and in figures 3.11 and 3.12 a thrust angle of
a = 20 deg has been used.

As it can be seen from the figures 3.1, 3.3, 3.5 and 3.7 the approximation
is able to capture the long variation of the parameters, without catching the
short period one. The errors for the first two cases are quite small also for
a large number of revolutions. This is no longer true for the case of higher
acceleration. In this situation the error remains little only for a fraction of
the total trip considered. The error remains acceptable only if the expansion
is used for angular travels approximately equal to one revolution (or even
less).

Note that if compared with the standard perturbation results the two

95



scale method seem to provide a solution which is less affected by the drift

from the accurate numerical one, although it does not capture the short term
variations.

------- Numerical Integration
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Figure 3.1: Parameters in time, o = 0 deg, ¢ = 1074
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Figure 3.3: Parameters in time, o = 0 deg, ¢ = 1073
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Figure 3.4: Error in time, o = 0 deg, e = 1073
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Figure 3.5: Parameters in time, o = 0 deg, € = 1072
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From the following figures it is clear that if a tangential thrust case or a
case with thrust in arbitrary direction is considered, the trend for the param-
eters and the error in time is qualitatively similar to the case of trasversal

thrust.
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Figure 3.11: Parameters in time, a = 20 deg, € = 1073

62



35

35
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Figures 3.13 and 3.16 present the trajectory shape for ¢ = 1072 and ¢ =
1072 respectively. For both cases the trajectory approximation is satisfactory:
even if the two scale method is only able to capture the long period variations,
it allow for obtain a good trajectory approximation (even for a large number
of orbits) if € remains sufficiently small.

In what follows the trends for the radius error, defined as'

Ar T — Ty

Qo (%)

are presented. In 3.14 and 3.17 its value is plotted as a function of time, while
in 3.15 and 3.18 it is rappresented as a function of the angular coordinate
6. It is clear that in the first two cases the error is large whereas in the
second ones it remains limited to acceptable values. This fact is caused by
the indipendent varible change, from time to longitude. With this action the
time is become a dipendent variable so it cannot be evaluated exaclty, so that
this error cause a position error in time which grows rapidly. If the position
error is evaluated with respect to the angular coordinate the problem of time
is overcome and the precision become higher.

Numerical Integration
Two Scale Approximation

0.8

0.6

04

021

Figure 3.13: Trajectory, a = 0 deg, € = 1072

IThe subscript ts means two scale.
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Figure 3.16: Trajectory, o = 0 deg, ¢ = 102
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Figure 3.17: Error on the radius, a = 0 deg, function of time, ¢ = 1072
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3.3 Standard Perturbtion Results

In this section the results for the standard perturbation approach are com-
pared to an accurate numerical solution found again by means of Encke’s
method. In what follows two cases are presented, for a general case (with
non-zero eccentricity and inclination) and a circular orbit with zero inclina-
tion, in order to highlight the fact that the formulation proposed in this work
is not affected by singularities.

Similarly to what was presented in the previous section, there are two
figures for each value of e: one for the trend of the parameters in time and
a second one reporting the variation of error with time. Since the formula-
tion is three—dimensional, six plots per figure are presented, where the last
parameter is the flight time instead of the mean longitude, as explained in
detail in the previous chapter. Two angles for the thrust orientation need to
be considered: « in the orbit plane and 3 outside of it. Their values will be
specified case by case.

For the general case for the first two values of € ten orbits have been
simulated, while for the other cases a variable number of orbits has been
considered, depending on the value of ¢.

3.3.1 Generic Eccentric Inclined Orbit

For this case the angles have been chosen to be a = 45 deg and 3 = 20 deg.
As it can be seen from figures 3.19, 3.21, 3.23 and 3.25 the approximation
is able to capture both the long and the short period variations of the pa-
rameters. The errors for the first two cases are quite small also for a large
number of revolutions. This is no longer true for the case of higher accelera-
tion. In this situation the error remains little only for a fraction of the total
trip considered. The error remains acceptable only if the expansion is used
for angular travels approximately equal to one revolution (or even less), as
already seen for the two scale method.

Note that, in all the considered cases, the error grows approximately as a
quadratic function of 7, with one exception for a,e and i for e = 10™*, where
the behaviour is almost linear, but the absolute value remains very small.
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= Standard Perturbation Approximation
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------- Numerical Integration
Standard Perturbation Approximation
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Another perculiar aspect of the standard perturbation approach is that is
capable of capturing the short—term, suborbital oscillation of the parameters,
provided that ¢ is sufficiently small. When ¢ grows, the most dramatic error
is the underestimation of parameter oscillation amplitudes with respect to the
actual variation estimated by the numerical propagation. For the considered
cases, e, w and () are particularly affected by this problem (see Figs. 3.23 and
3.24). One should note at the sime time that at this point a purely forward
propagation is being considered, where the values of the integrals at the
basis of the perturbative expansions are evaluated only once, for the initial
conditions. A significant improvement in error performance can be obtained
if these integrals are updated every once in a while, as it will be done in
section 4.4, for comparing the results obtained by means of the perturbative
approaches with those obtained by Scheeres & Hudson in Ref. [18].

------- Numerical Integration
Standard Perturbation Approximation
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Figure 3.23: Parameters in time, e = 1072
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In figures 3.27 and 3.29 the trajectory is rappresented. It has the typical
spiral shape, in case of ¢ = 107 the approximation is satisfactory even for
a large number of orbits, whereas for ¢ = 1072 the total angular travel must
become lower in order to obtain a sufficient accuracy. In figures 3.28 and 3.30
the position error is rappresented with respect to time. Its value become high
also for small values of time, this is caused, as said before for the two scale
method, by the change in indipendent variable performed for the approach
derivation. The time become a dipendent parameter and the error in its
evaluation cause a rapid growth of the position error.
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Figure 3.27: Trajectory, e = 1073

74



0.09

0.08 -

0.07

0.06 -

0.05F

A r/a0

0.04 -

0.03|

0.02r

0.01r

Figure 3.28: Error on the radius function of time, ¢ = 1073

Numerical Integration
Two Scale Approximation
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3.3.2 Circular with Zero Inclination Case

For this case the angles for thrust direction have been chosen to be a = 20 deg
and # = 20 deg. As far as the evolution of orbit parameters and prediction
error are concerned, the results are similar to those reported in the subsection
for a generic elliptical inclined orbit.
satisfactory results in case of small acceleration, while its accuracy falls for
large angular travels if € grows. It has to be noticed that the formulation
works well (even better due to the semplification seen in Chapter 2) also
in presence of circular orbits with zero inclination thanks to the equinotial

The approximation provides again

parameters formulation, which is not affected by singularities.
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3.4 Accuracy Analysis

3.4.1 Error Analysis

In the previous two sections it was shown that the approximation error
steadily grows with the amplitude of the trajectory arc, and that this growth
becomes faster for higher values of the perturbation parameter ¢, that is, the
ratio of the acceleration produced by thrust and the gravitational one.

A detailed study on the evolution of the error as a function of the pertur-
bation parameter, for various amplitudes of the trajectory arc thus rapresents
an important step into the definition of limits within which the perturbation
approximation provides an acceptable prediction of the variation of orbit pa-
rameters. As usual the reference solution for evaluating the error is obtained
by means of a numerical propagation scheme based on Encke’s method.

Figures 3.35, 3.36 and 3.37 show the trend of the average error (it’s value
is the mean one calculated considering the last approximated orbit) as a
function e. The values of € vary between 1072 and 1 for an angular trip less
than one orbit (Fig. 3.35), while for one revolution € ranges between 107
and 107! (Fig. 3.36). A smaller maximum value of ¢ = 1072 is considered
for propagating the low—thrust trajectory for as many as 5 revolutions (Fig.
3.37).

It is clear how the error grows with € and substantially there is an almost
linear trend in logarithmic scale. The error can be mitigated if the angular
trip is lowered.

The last figure, Fig. 3.37, clearly shows that, if a multiple revolution
expansion is sought, the error on all the orbit parameters become large, even
for relatively small values of €. This means that the forward expansion must
be truncated and the integrals updated, as it will be shown in the next
section, or only very small value of the force delivered by the propulsion
system can be considered. As far as practical applications are concerned,
these very low values can be considered when dealing with solar sails [19].

Clearly when higher values of € need to be considered, the angular travel
must be considerably shortened (Fig. 3.35). For the same 1% accuracy on
a, arclength of 90 deg at most can be considered for ¢ = 0.1, while 20 deg or
even less can be propagated if € grows close to unity.

This aspect, even if it is quite obvious, is very important since, as it will
be seen later on, depending on the vehicle characteristics (mass and thrust)
and the mission setting (distance from the main body), the value of ¢ could
grow as high as 0.5, in these cases the small arc considered for assuming the
approximation as valid must become smaller.

80



%e/e U0 JOLIT UBS\

-

[Bop] 1 uo Jou3 uesy

3
hs W
+ kS
o0
g % % o
z = = 8
© 3
= =
=
g
| L L, o
— © o ° m_ - 20 00 9__0 40 - wn
& = = = = 2 2 2 2 &
= 1 UO J04IT UBd\ =
e [Bap] ® uo Jou3g uesy Re]
S 5
= <
W b ) >
o 2 = g
o w w )
g g —
o ] [oe]
o=
Lpbp < < m
= el =2 &
= © o Q T o Q T <
o o o o o o o o
S o
" 9 U0 Jou ues\ [Bop] &5 uo Jou3g uespy =
< (<D}
= g
2 ¥ q 3
— o o
m - I
< . )
- «
= T 1 Bk
~ D 0 e w 1) = m m
% > 50 OO _O _O 00 _O _O mo
Y o) o —
M Oe/B UO J0LIT UBS\ [Bap] 1 uo Joug ues S
=y
= e
50
N —



0

/

00
.
107

1
1

[Bap] ® uo Joug uesy

| OSB

9 U0 J011g ues|\

/

10
10

%g/e U0 JoLIg Ues|\

-2

10

0—3

1

107

-2

10

-3

0

1

107

€

/

€

| OSB

/

10’

10°

10
107

2 U0 J01Ig UBdJ\

2
4

o 1
O O

— — —

[Bap] ©5 uo Joug uesy

0
0—6

[Bap] 1 uo Jou7 ues

0

1

-2

10

0

1

107

-2

10

-3

0

1

107

€

€

€

Figure 3.37: Mean error after five revolutions as a function of €

82



3.4.2 Heliocentric ¢ variation analysis

From the previous discussion,the relevance of the values assumed by the
perturbation parameter e clearly emerged. As a consequence, its variation
is here analyzed in an heliocentric scenario. The values of thrust and mass
are taken from the datasheet of a modern mission, scheduled for 2014, the
BepiColombo aimed at sending a probe towards Mercury. Different vehicles
are still being considered for the mission, but the largest one has a mass of
approximately 1200 kg and it is driven by electrical thrusters that deliver a
force between 0.17 N and 0.34 N.

In Fig. 3.38 the trend for the gravitational acceleration p/r* and accel-
eration ratio € is reported as a function of the distance from the Sun. The
curves are reported in Fig. 3.38 that are parametrized by thrust values equal
to the maximum and minimum values considered. Figures 3.39 and 3.40
show isocontour lines for € function of the distance. The two plots represent
the limite cases, for maximum and the minimum thrust.

Quite obviously, when thrust is halved, the resulting value of ¢ is also
reduced by 50% for the isocontour lines at the same distance from the Sun.

From all these observations it is clear how, for the considered vehicle, the
value of ¢ would assume values up to some tenths in case a trip to Mars
distance (approximately 1.5 AU) is dealt with. In this case the maximum
angular trip allowed maintaining an erro betweeen 1 and 2% in the estimate
of orbit parameters is between ten or twenty.

If trip to Jupiter distance is considered (5 AU) the value of £ grows to
values which harm the validity of the considered expansion, which thus is no
longer a valid orbit propagation tool, if a constant thrust is assumed.

In Figure 3.41 there is another kind of analysis, where for a limit value of
e = 0.25, and a mass equal to 1200 kg, the maximum distance as a function
of thrust is determinated, which results in a value of € confined below the
limit set above. So it is clear how, for travel up to Jupiter distance, ¢ remains
below ¢ = 0.25 if thrust is less 0.075 N. This values is very small, for ion
thruster, if a constant thrust is available, indipendently of the distance from
the sun, as if a nuclear reactor was used for producing the required electrical
power. On the converse, the same value may be reasonable for solar sails,
the thrust being inversely proportional to the distance form the sun, thus
resulting in an almost constant value of e.
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3.4.3 Geocentric ¢ variation analysis

An analysis similar to that considered in the previous sub—section for a he-
liocentric scenario, is here reported in the framework of space missions (or
mission segments) taking place within the sphere of influence of the Earth,
up to Moon distance. In this case the same mass of the heliocentric analysis
is assumed for the analysis, m = 1200 kg, with a single value for thrust,
which is an intermediate value between the maximum and the minimum for
the BepiColombo probe, i.e. 0.255 N. The limit on ¢ is the same as before.
The results are qualitatively similar to those reported for the heliocentric
case. Some characteristic distances like GEO and LEO orbit radii and the
distance of the Laplacian Sphere of Influence are reported on the plots. It is
clear how in this case also for high values of thrust the € which result is quite
low, so in case of geocentric trajectories the approximation can be extended
to larger arcs, up to values as high as one/two orbits, while maintaining the
error below some percentual points.
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Figure 3.42: Gravitational potential and e variation with distance, thrust
0.255 N and fixed m = 1200 kg
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3.5 Reference Comparison

One of the most recent work in the literature which performs a similar search
for analytical relations for describing the motion under low—thrust propulsion
is the paper by Scheeres and Hudson [18]. They use a Fourier expansion and
by means of this tool they approximate the thrust profile first and then in-
troduce it in Gauss’s variational equations written in the classical parameter
formulation. By analitical integrating they obtain the rate of change of each
parameter and these six quantities are function of a restricted number of the
Fourier expansion coefficients used for approximate the thrust profile.
Beside the high number of relevant interesting features of the work, like
the speed of the algorithm and the semplicity with which it can approximate
every kind of thrust profile with variable magnitude and direction (this aspect
steams directly from the Fourier series capability), there are two major limits:

e It is capable to capture only secular (long term) variations, without
taking into account short term ones;

e [t can not deal with cases with zero eccentricity and inclination, close
to zero;

e Only periodic variation of thrust components can be dealth with.

In spite of this limits for its application, this approach represent and
interesting reference for the performance of the perturbative approach. A
comparison between the two solutions to the propagation of orbit parameters
under low—thrust propulsion will thus be considered in the sequel. This will
be done on the basis of the examples reported in [18] where the thrust profile
is assumed to be defined as follows

1077 if Eel3,n] A Eecl[3,2n]
0 if E€[0,3] N Ec[r]

b

T(E) =

where FE is the eccentric anomaly and the direction of the thrust is only
trasversal.

For such kind of profile a comparison between four different methods will
be considered

1. Numerical Encke’s Method,;
2. Scheeres’s Method,;

3. Two—Scale Perturbative Approach;
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4. Standard Perturbation Method.

The trend of the three relevant parameters for the planar example con-
sidered (semimajor axis a, eccentricity e and argument of the perigee w) is
rappresented in the figure 3.45. The expansion is performed for ten orbits.

As clearly shown, the Fourier—-based approach catches well the long period
variation, exactly like two scale method (but the latter one demonstrate less
accuracy for the argument of periapsis). The standard perturbation is able to
catch also the short period term and it remains really close to the numerical
integration result. This fact can be observed clearly in the second picture
where the difference between them remains confined below 1072-1072 even
for ten orbits .

------- Encke Stardard Perturbation
Scheeres — — — Singular Perturbation

0.095

o [deg]

Figure 3.45: Parameters in time
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3.6 Computational Time Evaluation

In this section the computational time of the expansions derived in this work
is analyzed. As a reference point the numerical integration performed by
means of the Enkce method is used. The time posted in the following tables
is evaluated by means of the tic toc Matlab(Oroutine.

In Table 3.2 the comparison between two—scale method and an accurate
numerical integration scheme is presented.

€ tnum [3] Zftwoscale [3] ttwoscale/tnum

1073 15.036634  0.256453 0.01705
107" 14.588808  0.238075 0.01632

Table 3.2: Computational time comparison for two-scale method.

In case of ¢ = 1073 the value of computational time for the analytical solution
is 1.705% of the numerical one while for e = 10~* the percentage is 1.632%.
This ratio can be considered not related to the number of orbits considered
and from the value of the adimensionalized acceleration ¢.

In Table 3.3 the comparison between standard perturbation method and
an accurate numerical integration scheme is presented.

€ tnum [S] tperturbation [3] tperturbation/tnum
1073 53.774197 5.060510 0.0941
10~ 52.776370 5.995314 0.1136

Table 3.3: Computational time comparison for standard perturbation
method.

In case of ¢ = 10 the value of the computational time used for obtaining
the analytical solution is 11.36% of the numerical one while for ¢ = 1073
the percentage is 9.41%. Again, this ratio can be considered not related
the number of orbit simulation and from the value of the adimensionalized
acceleration.

It must be underlined that the comparison here presented is truthful if
one wants to obtain from the analitical approximation the same result given
by the numerical one, that is the orbit propagation with the calculation of
the intermediate points between the initial and the final one. But whereas
the numerical one must always do this task for obtaining the final position
and velocity, the analytical approximation could avoid the evaluation of all
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the intermediate points and calculate directly the final required values. This
is true is is not need to update the parameters values during the whole
propagation, if it is needed, some internal points are needed.

In Table 3.4: are presented the result for the comparison of the analytical
approximations derived in this thesis with the analytical approximation by
Scheeres [18]. Scheeres’s method is about two times faster than the twoscale
one and many more times respect to the standard perturbation method,
but with respect to this one it does not capture the short period terms,
as underlined before. In addition, it must be note that a great amount of
computational cost for Scheeres’s method is not taken into account here,
that is all the calculations needed to obtain the Fourier coefficients for a
given thrust profile.

tscheeres [5] ttwoscale [5] tpert [5] 2fscheeres/ttwoscale tscheeres/tpert

0.230017  13.184149 0.492038 0.4675 0.01744

Table 3.4: Computational time comparison for different approaches.

3.7 Perturbative Expansions Applied to Op-
timization Methods

In this section a preliminary application of the perturbative expansions to
a Direct Optimization Method is outlined. The most important benefits
that this technique can introduce. An overview on optimization methods is
reported in Appendix C.

The most important aspects in which the introduction of the perturbative
expansions present significant advantages are:

e Orbit propagation/trajectory computation from the given initial values
forward to the final point of the sub—element by means of an analytic
expansion instead of numerical orbit propagation, thus increasing com-
putation efficiency;

e The possibility of using Automatic Differentiation, for analiticaly com-
puting the gradients in the optimization process, improving its conver-
gence rate.

Both these aspects are analyzed in a dedicated subsection; the result is a
new formulation for a sub—element by means of which the trajectory can be
discretized that should provide a great reduction of computational time, as
shown in the next section where results are reported.
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3.7.1 Orbit Propagation

Direct optimization methods are usually implemented by means of the di-
rect transcription technique which implies the multiple shooting approach:
the trajectory is discretized in finite sub—elements and the initial points of
each subelement are guessed. Then, togheter with constraints enforcement
(boundary conditions, state equations, etc.) the matching conditions at the
nodes must be introduced (the final value of each subelement for a variable
must be the same of the initial value on the following one).

Usually the indipendent variable is time but since the analytical rela-
tions found in the previous sections for the trajectory description in case of
low—thrust are parametrized by means of the mean longitude L this will be
assumed to be the indipendendent variable. Time will assume the role of
a common dependent variable, varying according to its own approximated
analytical relation.

For discretizing the trajectory one can look at the total angular trip an
divide it in a given number N of sub arcs. It is clear how, once the initial
conditions in each node are given (state and control variables & and u), a
numerical propagation which can determine the trend for all the different
variables in that sub—element is required. So a natural way for using the
approximated relations that describe such a variation under the action of
a low—thrust propulsion system is to use them for the orbit propagation
(insted of the numerical integration of the dynamic equations), since only
the initial conditions on state variables (five orbital parameters and time)
and the control variables (magnitude of the acceleration and two angles)
must be known.

At this point a key issues rises: the value of N, the number of subarcs,
which choice is of critical importance.

First of all the total number of optimization variables is proportional to
N if one consider six state variables plus three control variables the number
of variables y is given by

y=9N
As an example, when an Earth-Mars trajectory is considered, with an angular
trip of three and a half revolutions, considering sub—elements of 21 degrees
each, one obatins
3.5-360
21

N = 60

so that the number of variables is
y =9 x 60 =540

which is a very large number of optimization variables;
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At the same time its value is linked to the error allowed by the perturba-
tive expansion. It has be seen in the previous sections that the error depends
on the value of the ratio of the low—thrust acceleration to the gravitational
one, and if this value grows the arc length must be reduced in order to limit
the error of the approximation.

The orbit propagation can be done in different ways, for example it can be
forward expanded or centered depending on how the initial state is expanded.
In the first case (forward expansion in Longiture and/or time), given the set
of initial values on one subelement, the expansion is performed only forward
in L (see figure 3.47);

In the second one (centered expansion), given the set of initial values on
one subelement, the expansion is performed backward and forward in L (see
figure 3.48) for half of the arc amplitude.

With the centered expansion propagation is done for one half of the total
travel in both directions for the same total subarc angular amplitude, so that
a better approximation, i.e. a smaller error, is expected.

Another modification can be the introduction of a mix of the two tec-
niques, namely two scale and standard perturbation, the former (less affected
from the drift due to the epsilon value) valid for in plane orbital parameters
and the latter for the out of plane ones plus time. Although interesting in
principle this aspect will not be investigated in this work.

Perturbative Expansion

AN —
|

Initial Points

—

Numerical Exact Expansion

Figure 3.47: Forward Expanded
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Figure 3.48: Centered

3.7.2 Automatic Differentiation

In order to find the optimal solution, derivatives of the performance index
and constraints with respect to the parameters need to be evaluated. This
task is usually performed numerically and obviously this is a computationally
demanding process and, morover, it introduces numerical inaccuracies in the
evaluation of the gradients, which reduce convergence rate.

A different approach to be used when analytical expression for func-
tional dependencies are available, relies on automatic differentiation proce-
dure which consist in obtaining analytically the derivatives, thus eliminating
a numerical process and related inaccuracies. There are a lot of numerical
algorithms that can performautomatic differentiation, but their speed de-
pends on the particular form of the functions and each of them must be
properly interfaced with the rest of the algorithm. It should be noted that
the computational cost for automatic differentiation is paid only in the first
iteration, once all the derivatives are evaluated their value remains fixed in
the following interations.

3.8 Optimization Methods Results

In this section the main features and results of a preliminary application of
the standard perturbative expansions to a direct optimization method is pre-
sented. The solution method is based on the constrained otpimization routine
fmincon available in Matlab@The main parameters for the implementation
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are:

N: number of the finite arcs in which the trajectory is discretized;

J: performance index, which is identified in the total AV for the con-
sidered mission;

c: a vector of constrains.

There are four kind of constraints for the problem:

initial and final position and velocity (boundary conditions);
matching constrains at the nodes;
time constrain;

acceleration contraints (related to the thrust limit).

In order to test the optimization algorithm an Earth-Mars trasfer like was
simulated. Transfer and vehicle data assumed for the problem are:

Circular orbits radii: from 1 to 1.5 AU,
Maximum thrust: 0.5 N;
Spacecraft mass: 1000 kg;

Maximum transfer time 1.25802 - 10® gg = 3 years 5 months 13 days
0 hours 35 minutes 46 seconds, (which was the result obtained from
another optimization technique);

Initial guess: biimpulsive transfer with two additional revolutions, for
a total angular trip of 2.5 revolutions;

Number of finite elements (subarcs): N = 80, resulting in an angular
trip for each element of 11.25 deg;

Orbital propagation implemented with the analytical expansions using
the centered method, no automatic differentiation;

Contrains tollerance 1078

98



For these considered data, an acceleration ratio of ¢ = 0.084308 is obtained;

The optimization results are presented in the Figures 3.49, 3.50 and 3.51.
Fig. 3.49 shows the trajectory, Fig. 3.50 the variation of the equinocial
orbital elements as a function of L and, finally, Fig. 3.51 the thrust profiles
with, respectively, magnitude, in plane and out of plane angles for each
subelement.

In the Table 3.5 is presented the value of the performance index which is
the total AV compared with the one obtained from the hohmann transfer.

A‘/hohmann [km/s] A‘/lowthrust [km/s]

AV 5.41048 5.37851

Table 3.5: AV values for the mission.

For the error with respect to a complete numerical solution and the com-
putational time evaluation? a simple case is taken as another example, it is
a simple orbit raise in LEO setting, with tangential thrust of low magnitude,
also for this case 2.5 revolutions are taken into account, both the values are
reported in the table below, where ‘E-M’ means Earth-Mars transfer, ‘num’
means numerical result and ‘exp’ means expansion result: it can be seen that
the introduction of the perturbative expansions allow to save a lot of com-
putational time, with an acceptable error also for a setting (the Earth-Mars
one) with a value of the parameter € not so small. It has to be underlined
that the use of the centered expansion allow, for the same number of ele-
ments, to reach two/three times the precision reacheble in case of forward
expansion.

LEOnum [S] LEOexp [S] E—Mnum [S] E—Mexp [S]

Time 1.71 0.0013 0.6679 0.0424
Time ratio 1.00 7.602-10~* 1.00 0.0634
Error — O (1079) — 3.867-1073

Table 3.6: Computational time comparison.

2The time is relative to the numerical propagation.

99



Figure 3.49: Optimized trajectory
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Figure 3.50: Parameters variation: a, P;, Py, Q1, Q2
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Figure 3.51: Thrust profile: magnitude, azimuth « and elevation [
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Chapter 4

Conclusions

4.1 General features

Two different analytical approximations for low-thrust trajectory arcs were
developed and analyzed, both based on a perturbative approach where an
expansion in terms of angular coordinate variable is considered. The first
approach is based on a multiple-scale perturbative expansion of the funda-
mental equation of Astrodynamics, written in polar coordinates, with respect
to the anomaly, #. The second method introduces a standard perturbative
expansion in terms of mean longitude L of the Gauss’s variational equations.

The two scale method is simpler, but it is limited to planar analysis, while
the second one is more complex, but allow to consider fully threedimensional
motion.

The results obtained by means of both expansion in evaluating the evo-
lution of orbit parameters under low—thrust are quite satisfactory, especially
when the standard perturbation method is considered, as it is capable of cap-
turing both short and long period terms and it is not affected by siingulari-
ties induced on classical orbital parameters by circular and zero inclination
orbits, as an equinocial elements formulation was derived. The physical con-
sistency of the two formulations was proved by means of several simulations
and a comparisons with results obtained by means of an accurate numeri-
cal method. Also another analytical formulation, based on a Fourier series
expansion, was considered in the framework of the test-benchmarks, which
proved to be more efficient in terms of computational time, but less general as
it can accomodate only cases with periodic variations of thrust and it suffer
singularities for circular and zero-inclination orbits. Nontheless the savings
in computational time with respect to numerical solutions, are considerable,
if one wants to propagate the orbit under the action of a low—thrust propul-
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sion system, both analytical formulations allowing for a reduction of CPU
time between 90 and 98%, when one wants to obtain all the points along the
arc. But the method allows also for the direct estimate of the final values at
the end of a given arc, in which case the analytical approximation is simply
not comparable with a numerical solution which always requires significantly
smaller integration steps.

There are some limitations that restrict the applicability of both the for-
mulations. In general, the ratio € between spacecraft and gravitational ac-
celeration must be limited, in order to maintain the error on the propagation
of orbit parameters into acceptable limits. For larger values of ¢ the arc—
length of the expansion must be significantly reduced. As for the two—scale
approach, more specific limitaiton are represented by:

e thrust is assumed constant in magnitude and its direction either aligned
with velocity or fixed with respect to the radial-transversal reference
system;

e the derivation was performed for the planar case only.

This latter aspect is particularly relevant, inasmuch as if considerably re-
stricts the type of orbit transfers that can be described by this approach,
ruling out every mission or mission segment that requires an orbit plane
change.

Also for the standard perturbation: thrust magnitude is assumed con-
stant, with a thrust direction fixed with respect to the radial-transversal—
normal reference system, but as for the rest, the approach is absolutely gen-
eral.

It should be noted that these latter limitations (namely the assumption
of constant magnitude and direction of thrust) do not seriously harm the
relevance of the proposed approach, as long as it is possible to discretize
the trajectory and assume piecewise constant control for each sub-arc, the
amplitude of which is determined in such a way that the resulting error
remains bounded within acceptable limits.

A detailed error analysis has been performed and it has be seen that
precision is stricly a function of the acceleration ratio € (thrust over gravita-
tional) and of the approximated arc length. The value of € was investigated in
two tipical contexts, geocentric and heliocentric, for a modern space vehicle
configuration. With current tecnology, the value of € in geocentric scenarios
remains quite low, so relatively large arcs (of several tens of degrees) could
be used also for a distance equal to the Laplacian sphere of influence. In case
of remote mission (as far as Jupiter) the arc approximation must be reduced
due to the high value of the acceleration ratio and it should be ten or twenty
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degrees long at most. Of course in case of larger distance, the more tradi-
tional impulsive approximation could be used when dealing with electrical
propulsion, since the time of the burn becomes negligible with respect to the
orbital period. In this case an analytical approximation for large low—thrust
trajectory arcs is not needed anymore.

4.2 Preliminary Application to a Direct Op-
timization Problem

The analitical relations found by means of the standard perturbation ap-
proach were applied to a direct optimization problem, where their task was
essentially that of replacing the numerical integration of the equations of
motion in the trajectory propagation step. Another possible use is the auto-
matic differentiation for the evaluation of performance index and constrains
gradients with respect to optimization variables, which was not investigated
in the present study. Two methods for use of the analytical relations instead
of the numerical integration where considered: a forward expansion and cen-
tered one. In the first one the expansion is performed only forward with
respect to the angular variable, L, while in the second one the control point
was set at half of the arc—length, so that backward and forward expansions
were necessary for determining the values at the edges of each discretization
arc. This second technique allows for a significantly better accuracy in the
prediction, up to two or three times a higher precision with respect to the
forward expansion formulation, for the same total arc length.

These techniques allow for a sizable reduction of computational cost of
the whole optimization process with respect to the use of a numerical inte-
gration algorithm. A straigthforward application of perturbative expansions
is thus the development of a fast algorithm which can help in selecting good
approximated optimal solutions which can be used as first guesses for a fully
numerical more accurate direct optimization algorithm.

Future Work and Extension of the Approach

Further steps for the research on the application of perturbative expansions
to low—thrust orbit propagation can be outlined as follows:

e Implementation of an effective automatic differentiation: the
availability of an analytical expansion for orbit propagation allows one
to formulate analytical expression for performance index gradient and
constraint Jacobian matrix, with the aim of a fruther signigicant reduc-
tion of the total computational time for the optimization procedure.
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e Implementation of a mixed tecnique: two—scale and standard per-
turbation techniques can be used in a mixed approach which could al-
low the same precision with the use of larger sub—arcs, due to the lower
drift caused by large € values in the two scale approximation, which
propagates secular terms only.

e [t is also possible to figure out a fully three-dimensional formulation for
the two—scale approximation, in order to broaden its applicability to a
larger class of problems, or to derive a second—order formulation for the
standard perturbative approach, in order to improve its accuracy and
allow a discretization of low—thrust trajectory based on larger sub—
arcs. Both these tasks appear to be extremely demanding from the
mathematical stand—point, but they would provide a truly significant
improvement to the potential applications of perturbative expansions
in the framework of space missions analysis and design.
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Appendix A

Fundamentals of Space Flight
Dynamics - Orbital Mechanics

In this chapter will be resumed all the most important astrodynamics con-
cepts of the two body orbital mechanics which is the most common setting
for studying the motion of a spacecraft in space.

A.1 Two Body Problem

In the preliminary study of an orbital transfer one can assume, in order to
simplify the problem, the presence of interaction only between two bodies:
the main (primary) body and the space vehicle itself, assuming the other
influences (those caused by the other celestial bodies, the solar radiation, the
asphericity of planets, etc.) negliable.

Kepler Laws

The first step towards the modern Astrodynamics it is used to be identified
with the studies of Johannes Keplero, who between 1609 and 1619 wrote
down the famous Three Laws, derived from the analysis of data on the planet
movement, previously collecter by the studious Tycho Brahe. The three
Kepler Laws can be resumed as follows:

First Law: Each planet orbit is an ellipse with the Sun positioned on its focus
(cf. fig. A.1);

Second Law: The position vector from the center of the Sun to the center
of the Planet sweeps outl equal areas in equal times (cf. fig. A.2);

Third Law: The sqare of a planet period is proportional to the cube of its
mean distance from the Sun.
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Figure A.1: First Kepler Law

The First and the Second Law can be generalised to those bodies that
moves with a velocity greater than the so called escape velocity, like some
comets do, considering open orbits, parabolic and hyperbolic ones, with the
Sun on the focus of the curve. This means that every possible trajectory in
the two body problem is a conic section. The Second Law express the conser-
vation of the angular moment: the distance between the planet and the Sun
will vary with the angular position of the planet and with a proportionality
law the velocity will vary too. The same kind of generalization cannot be
applied on the third law, infact the open orbits are not periodic.

Newtonian Law of Motion

Some decades after Kepler, Isaac Newton introduced (year 1687) the Three
Laws which nowadays are the classical mechanics foundations:

First Law: FEvery body continues in its state of rest or of uniform motion
in a straight line unless it 1s compelled to change the state by force impressed
on it. (This Law is valid once one can identify an inertial reference system.);

Second Law: The rate of change of momentum is proportional to the force
impressed and is in the same direction as that force;
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Figure A.2: Second Kepler Law

Third Law: To every action there is always opposed and equal reaction.

The Second Law can be expressed, assuming a constant mass, with the
following relation:
F =ma
with F the resultant of applied forces and a = dv/dt absolute acceleration
measured in an inertial reference system.

Newton’s Law of Universal Gravitation

Besides the Three Laws of Motion, Newton introduced the Law of Universal
Gravitation, this law in the Two Bodies Problem of mass respectively M e
m, gives the magnitude and the direction of the force of attraction between
the two bodies; this force is directly proportional to the product of the two
masses and inversely proportional to the sqare of the distance between them:

Mm .

F=-_-G u

r2

where G = 6.6731071'm3 /K g s> Universal Gravitation Constant and 1 versor
directed as the line joining the center of the two bodies, poining to the smaller
one. This law is exaclty valid not only for bodies considered as a point, but
also for those with a spherical symmetry and even for any form of planet if
considered at a distance so big that the body dimension can be considered
negliable respect to the distance.
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Equation of motion

If n-bodies are considered, with the only gravitational force acting between
them, writing down the law of motion for each of them one derives the so
called n-bodies problem. It is modelled in matematical term by a system of
n non linear second—order vectorial differential equations, it can be written
down using the Law of Universal Gravitation (in the real case beisdes these
terms there are others terms linked to the different kind of perturbations)
a_»nd the second law of motion, with the position rappresented by the vector

R,;. If n became grater that 2 it is impossible to obtain analytical solution
of the problem and it is necessary to procede numerically.

“A

=l

m,

Figure A.3: Geometry of the two bodies problem

From now on the problem considered will be only the two body one, with
mass my and msy where m; > mo; let them be spherical symmetric and the
only one force acting upon them would be the gravitational one. Considering
an inertial reference frame and being ﬁl and fig the position vectors of the
two bodies respect to that reference system (cf. fig. A.3), the position of my
respect to my will be given by:

F=R, - R,
taking the derivative one can obtain relative velocity and acceleration:

F:RQ—Rl; F:Rg—Rl

109



Once one express the force acting upon the two masses, by means of the
second Newton law it can be written the equation of motion. Adding one
the other and collecting the terms the following result is obtained:

oot Mg
r3
Usually can be assumed the ratio between the two masses mq/m; = m/M
is much smaller than one'. Defining then p = GM, called gravitational
parameter of the primary body, one obtain the Equation of Motion:
A J 2.
r=—3T (A.1)

It would be observed how that equation does not depend on the mass m, for
mo < my the problem become the so called restricted two body problem.

A.1.1 Costant of motion

Starting from the equation of motion A.1 and taking the dot product with
the velocity vector ¥ and the cross product with the position vector r one

can see that the quantities
2

v
E=——~ A2
7 (A.2)
called mechanic energy and .
h=rxv (A.3)

named angular momentum, are constant. Moreover since the vector h is
normal respect to the orbital plane this means that the motion will take place
always on the same plane. Finally computing the cross product between the
equation of motion and the angular momentum one obtain another constant
of motion, the eccentricity:

vxh 7

r
W r

e =

Trajectory Equation

In order to derive the trajectory equation one can dot multiply the position
vector ¥ with the eccentricity vector €, it results in:
I
F-6=— —r (A.4)
1

IThe two celestial bodies better balanced in the solar system are Pluto and its satellite
Caronte, for them this value is 0.142857.
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then letting v be the angle between the eccentricity vector and the position
one it is obtained r - € = re cos v from which it can be derived the trajectory
equation in polar coordinates centered in the primary body, that of mass M:

_ e (A.5)

 1+ecosv

A.1.2 Conic Sections

It is called conic section the set of points P for which the ratio between the
distance r from one fixed point F' (foci), and the distance d from one given
line a is a positive constant e (eccentricity): r/d = e. Named s the distance
between the foci and the line one has:

d=s—rcosv=r=e(s—rcosv)

Collecting the radius r in the previous equation it becames:

€s

14 ecosv

This is the generic equation for a generic conic section in polar coordinate
with the foci at the origin. The constant p = se is called semi-latus rectum
or parameter and it is the distance between the point P and the foci for
v = /2. Comparing the previous formula for the trajectory equation with
that for a generic conic section it is clear how in the two bodies problem the
motion of the smaller mass it is a generic conic and the parameter of the
orbit is directly linked to the angular momentum p = h?/pu.

Relation between mechanic energy and semimajor axis

It is easy to obtain a direct relation between the mechanic energy £ and the
semimajor axis of the orbit described by the mass m simply considering the
situation at the periaxis:

g=-1L (A.6)

2

Ellipse

An ellipse is a particular conic section that can be described as the set of point
for which the sum of the distance from two fixed points (focii) is constant:

r1+ 19 = 2a

The biggest dimension is called semimajor axis and measure a, the distance
drawed perpendicularly to the semimajor axis crossing the center of the curve
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D X
Figure A.4: Geometry of an Ellipse

is named semiminor axis and measure 2b. The distance between the focii
instead is 2c.
The following relations can be derived from the observation of the figure

A4
rp = p/(1+e) (A7)
20 = rp+ra=2p/(1—¢) (A.8)
ra = p/(l—e¢ (A.9)
2c = ra—rp=2pe/(l—¢")=2ae (A.10)
Vo= dd-F=ad*(1-¢€*)=ap (A.11)

The area can be expressed as:

A = rab = 1a*/(1 — €2) = ma/ap

A.2 Two dimensional motion analysis

In order to study the motion of one body in the space it is necessary to take
always present all the conventions used and with them all the parameters
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that will be adopted in order to identify the position in space.

Reference systems and velocity and acceleration components

The reference system choice is the starting point for a motion analysis. As
already seen in the two bodies problem the orbit plane remains always the
same, for this reason the motion analysis become bidimensional. Considering
the constance of the direction and magnitude of the angular momentum A.3,
one can define the various versors of the orthogonal right hand ruled non
rotating reference system with the origin in M as:

h x h
h

h
h

n = chosen arbitrarily on the orbit plane m = ; k =
Then can be introduced another reference system, this time not fixed but

still right hand ruled and orthogonal, with the origin on the mass m and

with versors defined as:

. hxi

) J = h

In this last system, called local reference - Fp, are here defined the velocity

vector and acceleration vector components, in this case one must take into
account also the temporal derivatives of the versors that are not fixed:

h
h

1 =

= |y

k-

v, = 7 vy = rd
a, = F—1r92 ay = 10+ 2/

Among the various non rotating systems one possible choiche is that called
perifocal reference system - Fp, centered in the body with mass M, and with
versors defined as:

R € B h x P

pr— 0 N o :l/\{:
P o P2 h P3

=l =]

One should observe that the angle w between the versor p; and 1 pre-
viously defined is constant; so for passing from one general fixed reference
on the orbital plane to the perifocal one the same relations for velocity and
acceleration must hold with the following device:

V=v+w v=210; v="1

The three systems rappresentation is drawed in the following figure A.5.

113



Plane of motion
Figure A.5: Reference Systems

Flight Path Angle

Let is consider the situation rappresented in figure A.6; let s be the generic
trajectory of the mass m and F the position of the mass M. In order to
evaluate the velocity vector components v, and vy that the mass m has in a
generic point on the orbit respect to the versors i andj of the local reference
it must be considered the generic trajectory equation

r (14 ecosv) = p = cost
taking the time derivative
(14 ecosv) —revsiny =0
SO : .
T esinv

tang = - = L = MY (A.12)

vy rv 14 ecosv

where the angle ¢ is the angle between the velocity V and the versor j,
perpendicular to the local vertical i, so which lie in the orizzontal local plane,
this angle is named flight path angle.

A.2.1 Time of flight on the elliptic orbit

Starting from the analysis of the elementary piece of area sweeped by the
position vector of the mass m one can obtain the expression of the period for
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Figure A.6: Flight Path Angle

an elliptic orbit as follows:

3
T =2m | L
1

In order to evaluate the time of flight of an elliptic orbit arc it must be
considered the area enclosed by the position vector of the mass m in the
initial and final position, then there is a proportional relation between this
area A, the total ellipse area wab, the orbit period T" and the time of flight
from the starting to the ending point on the orbit ¢;_,5. Assuming as initial
position the periaxis, the time of flight from it to a generic point P along the
orbit can be expressed as:

a3
tp=4|— (E —esinkE)
0

where F is named eccentric anomaly (cf. fig. A.7), and it is linked to the
ellipse parameters by means of the following formulas:
a—r e+ cosv

cos B = = (A.13)
ea 1+ ecosv

For evaluate the time of flight from a generic point P; to another generic
point P one can write:

[ a3
t1_>2 = tp2 — tpl = a—[EQ — E1 — € (sin E2 — sin El)] (A14)
1%
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Auxiliary Circumference

Figure A.7: Eccentric Anomaly

Extension to Parabolic and Hyperbolic Orbits

It is possible to define in a similar way the time of flight along non elliptic
orbit arches. In case of hyperbolic orbits the relation will be:

3
tiyo=tp, —tp = —%[e (sinh Fy — sinh Fy) — (Fy — F})] (A.15)

where F'is named hyperbolic eccentric anomaly and is linked to the trajectory
parameters by means of the quantities:

coshFr=""" = ¢ T cosy (A.16)
ea 1+ ecosv
In case of parabolic orbits one has
tp = — D + Lps (A.17)
P = 2/l p 3 :

where D is the parabolic eccentric anomaly, defined as
v
D = \/ptan <§)

Circular Velocity

With the term circular velocity is indicated that velocity which would allow
the mass m to describe a circular orbit with a null radial velocity v, = 0.
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This quantity can be obtained equalizing the centrifugal force, caused by the
centripetal acceleration, to the gravitational attraction force, it is value is:

Ve = \/g (A.18)

A.3 Three dimensional motion analysis

A.3.1 Orbital Parameters
Classical Orbital Parameters

A Keplerian trajectory is univocally determined by six parameter, since it is
the solution of a three dimensional vectorial second—order differential equa-
tion; the classical orbital parameters are widely used with this aim: four of
them are necessary for the bidimensional analysis indentifying the trajectory
on the orbital plane, while in order to place this plane in space two more
parameters are needed.

These parameteres are (cf. fig. A.8):

e a semimajor axis or p parameter - (orbit dimension);

e ¢ eccentricity - (orbit shape);

i inclination - (inclination of the orbital plane respect to the reference
plane);

e () longitude of the ascending node - right ascension of the ascending
node (RAAN) - (angular distance mesured on the reference plane be-
tween the point in where the orbit crosses the reference plane while
moving towards the north and a fixed axis previously wisely chosen);

e w argument of the periaxis - (angular distance mesured on the orbital
plane between the periaxis and the ascending node);

e 1y true anomaly at epoch ¢ or My mean anomaly at epoch ¢, - (position
of the mass m in a fixed time);

Modified Equinoctial Parameters

The previous set of orbital parameters has some problem in cas of orbits of
zero inclination (the RAAN is not yet defined) and if the orbits are circu-
lar (so the argument of periapsis become meaningless); a possible solution
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Vernal EquinG

Figure A.8: Classical Orbital Parameters

is rappresented by the so called Modified Equinoctial Paramters, these are
always defined for all eccentricity and inclination between 0° and 180°, so
the retrograde orbits are excluded but this is usually not a problem; these
parameters are

e p=a(l—e%);
o f=-eccos(w+Q);

e g =esin(w+ Q);

h = tan (i/2) cos (;

k = tan (i/2)sin Q;
e [p=0Q4w+ryorly=0Q2+w+ My;
computing the inverse relations one has

— p .
® 4=z
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o= VP

o i =2tan"! (h? + k?);
o w=tan"!(g/f) —tan~! (k/h);
o O =tan"!(k, h);

° VOZZO—Q—(.U;

Determining the orbital elements
The orbital elements can be easily calculated starting from the cartesian com-

ponents of ¥ and V measured in an intertial reference system at a particular

time ty. First of all one has to rememeber the relations

o oL

S
S
3>

Il

o=

k=

these unit vectors centered in the primary body define the direction normal
to the orbit plane, the direction towards the smaller mass m, the direction
of the ascending node and the direction of the periapsis, respectively. The

orbital elements can be computed as

° cosi:l%-g}g:kg;
e cosQl=mn-g,=n3 (N2 <0=0Q>m);

e cosw=mn-p; (e3<0=w>m);

e cosyy=1-p, (T-U<0=19>m);
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Expressing r and v in the Perifocal System

Supposing to know all the orbital parameters, it is simple to express the
position in the perifocal system

¥ =rcosvP +rsinvQ

where for the magnitude of 7 one can use the expression in polar coordinates
r

r = —
1+ ecosv

In order to obtain Vv one can differentiate the previous formula with the
derivatives of the unit vectors equal to zero since the frame is inertial, so

7=7%=(icosv—rusinv) P+ (7sinv + ricosv) Q

that can be simplified noting that
r= \/gesinl/ rv=,/8(1+ecosv)

and it becomes
[— sinvP + (e + cosv) Q]

({}
I
o=

A.4 Perturbations

Since now the discussion has involved only the motion of a body under the
influence of the gravitational force, the reality is far from this situation: all
the other forces (like the presence of the other bodies, the atmospheric drag,
the solar pressure, etc.) can be considered as perturbations. A perturba-
tion is a deviation from the normal or expected behaviour; some of these
perturbations maybe unpredictable and so must be treated in a stochas-
tic/probabilistic way, other ones can be modelled and analyzed analitically;
sometimes these deviation can be as large as the primary force so these added
forces must be always taken into account. There are two principal perturba-
tion techniques: the first one, special perturbation, consist of the numerical
integration of motion including all the perturbing acceleration and the sec-
ond one, general perturbation, consists in an analytical integration of series
expansions of the perturbing acceleration.
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A.4.1 Encke’s Method

The Encke’s Method is one of the most famous special perturbation methods.
The principle which lay in the background is to integrate separately the two
accelerations, this implies the existence of a reference orbit along which the
object would move under the influence of only the primary force, it means the
trajectory would be a conic section. All the calculations would be respect to
this orbit which is called osculating orbit since it is the kissing keplerian orbit
at a determined epoch, and would be the orbit since that epoch going forward
if all the perturbations are removed (cf. A.9). One can consider a keplerian

Rectification took
place here

True or

ing or
perturbed orbit v Osculating

reference orbit

Epoch
(initial time)

Figure A.9: Osculating orbit with retification

(kissing) orbit that is good until the perturbations does not deviate it too far,
at this time a rectification process must occur to continue the integration,
this means defining as osculating orbit the newer (true) one derived from the
integration at a new point. Considering the analytical formulation: first of all
it must be find an analytic expression of the difference between the reference
orbit and the true one, let 7 and p be the radius vector of, respectively, the
true orbit and the osculating one at a particular time. So

F+T3F:C_ip
and ) "
ﬁ+;ﬁ:0

since at the epoch tg =0 is
7 (to) = P (to) and B (o) = p (to)
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The deviation from the reference orbit can be defined as (cf. A.10)

—

or =7 —

=1}

SO

Perturbed orbit

Figure A.10: dr deviation from the reference orbit

. 3
or = dp + L [(1—p—)f—5r]

p3 r3

so one has the differential equation for the deviation from the reference orbit
and dr can be evaluated numerically, since p is know one can derive ¥ from
the previous two qunatities. With that precedure it is possible to evaluate
every true position forward in time. Anyway there is a problem since the
term

is the difference of two very nearly equal quantities and require very little
steps of integration in order to obtain a reasonable accuracy. This problem
can be faced defining
2
r

SO
3

p )
5= (1-29) i
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and the previous equation become

v = dp + % {[1-0-207"] - ov}

Now it must be founded an expression for the quantity ¢, starting from the
definition of r one can obtain

1 1 1 1
q= _F {5:5 (pm + 553:) + oy (py + §§y> + 6z (pz + 552)}

and the expansion in series of ¢

15, 105 ,
BT

1= (1-29)7% = =3¢

The method can be implemented as follows

1. Initial condition known: 7 (tg) = p(to), ¥ (ty) = p(to) defining the
osculating orbit; also at this point one has dr = §r = 0;

2. Calculate for one integration step or (to + At) knowing p (to), r (to);
q (to) = 0;

3. Knowing &r (t, + At) one can compute g (to + At) and ¢ (to + At);
4. Integrate another At to get 87 (¢ + kAt):

5. If ‘%" > a fixed value go to the first step otherwise continue;

6. Calculate ¥ = p + or and T = P+ or;

7. Go to step three where At is replaced by kAt where k is the step
number;

A.4.2 Gauss Equations

The method of the variation of parameters was originally developed by La-
grange in order to study the perturbed motion of two bodies in the form
1" (A.19)

af _ oz dv | pz
at — Y dt+r3r_[

SIS

where R is the disturbing function defined as

Section 8.4 Battin
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The solution of the undisturbed motion is known, can be expressed as
r=7(ta) v=1(a)

where the components of the vector & are the six constants of motion, e.g. or-
bital elements. One can assume that under the perturbations the parameters
& can vary in time, in order to satisfy the equation A.19 for the disturbed
motion. With this observation a set of differential equations for o can be
derived, these are in fact the result of the trasformation of the dependent
variables of the problem from the position and velocity vector to the param-
eters; although these new equations are complex as the previous ones they
have many advantages since only the perturbing acceleration will affect the
change in time of the variables so is a sort of generalization of the Encke’s
Method in a continuous one. The derivation need the following steps

for the disturbed motion
dr_or oFda
dt ot  Oa dt
and comparing this result with the previous equation one obtain
or da
oa dt
which means that the velocity vector of the disturbed and undesturbed mo-
tion must be identical. Similarly

4% _ 0% 0% da
dt ot Oa dt

again comparing the result with the previous equation one obtain

=0 (A.20)

(A.21)

ovda_ [oR"
oa dt | oF

and the equations A.20 and A.21 are the six scalar equations for the param-
eter a.

Writing the equation for the orbital elements

Choosing the six parameters as



and compunting all the calculation (see [2]) one can obtain

dQ __ rsin(v+w)

dt ~ hsini 0w

% _ rcos(hu+w) U

Lo — L [—pcosva, + (p+r)sinvag) — G cosi

‘2—? = % (e sinva, + %ag) (4-22)
g =+ {psinva, +[(p+r)cosv +ref ag}

M

L —p+ -2 [(pcosv —2re) a, — (p+ r) sinvag]
obtaining the Lagrange’s Planetary equations. If one want to obtain the
equations with the disturbing acceleration components expressed in the ref-
erence system with one direction along the velocity vector and the other one
normal to it, can observe that

ar h esinv —(l+ecosv) i

ag |  pv | 1+ecosv esinv ay,

substituting in the previous system one obtain

dQ __ rsin(v4w)

dt hsini w

di __ rcos(vtw)

a n Qw

dw _ 1 ; T _ a0 ;

= o [2 sinva; + (26 + . cos 1/) an] g Cos1

@ o 20,21) (A23)
dt — p 1

de

de = 112 (e+cosv)a, — Lsinva,]

M _ oy b [2 <1+%> sinuat+£cosyan]

Writing the equation for nonsingular elements

The previous system of equations has some critical problems, infact for zero
inclination angle or for orbit of zero eccentricity the equations became sin-
gular. In order to solve these problems one can use the so called modified
equinocial elements

P =esinw Q = tan 3isin

Py=cecosw :tan%icosQ
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where
w=Q4+w l=w+M L=w+v

in this way one obtains

‘;—‘; = 2“ [(Pg sinL — PycosL)a, + (19}
—Lcos La, + [Pl + (1 + ;) sinL} ag — Py (Q1cos L — Qysin L) aw}

r

dP, _ {
{g sin La, + [P2+ (1+§) cosL} ag+ Py (Q1cos L — Qysin L) aw}

i =k
dPy __ _r
at — h
9 — = (1 4 Q%+ Q2)sin La
t 2h 1 2 w
%z#(quQQ—I—Q%)COSLaw

#=n = {[3% (2) (Psin L+ Prcos 1)+

+ 2 q, + v (1+2)(PicosL — PysinL)ag+ (Qrcos L — Qasin L) ay }

which are equations with no singularities.
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Appendix B

Fundamentals of Perturbation
Methods

In this chapter there will be outlined the main characteristics of perturba-
tion methods, starting from general definitions to the standard and singular
perturbation methods, with some example made for a better understanding
of their possible applications.

B.1 Asimptotic Expansion

Consider a sequence of functions {¢, (¢)}, n = 1,2,.... Such a sequence is
called an asymptotic sequence if

¢n+1 = 0(¢n (5)) ase — 0

for eachn =1,2,....

Notice that the previous definition does not preclude having one or more
of the starting terms in an asymptotic sequence being infinite. Here again,
various operations, such as multiplication of two sequences or integration,
can be used to generate a new sequence. Differentiation with respect to e
may not lead to a new asymptotic sequence. Let u (x;¢) be defined in some
domain D of  and some neighborhood of ¢ = 0. Let {¢, (¢)} be a given
asymptotic sequence. The series 272/[:1 ¢n (e) u () is called the asymptotic
expansion of u (x;¢) to N terms (N may be a finite integer or infinity) as
e — 0 with respect to the sequence ¢, (¢) if

M

u(m;a)—Zqﬁn (e)u(x) =o0(odnm) ase =0 (B.1)

n=1
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for each M = 1,2,..., N. And if the relation B.1 holds uniformly in all the
interval D the expansion in said to be uniformly valid.

Once the function u (x;¢) is given and the asymptotic sequence ¢, () is
specified, it can be defined each of the u,, (x) uniquely by repeated application
of definition

u () = lim (B.2)

This approach must be applied with some advices due to it is particular
validity cases, in fact if one consider the next function

A

u(z;e) —ef — =€
xr+e

= f(z;¢) (B.4)

in the interval 0 < x < 1 and 0 < ¢ < 1. Fixing it and applying the
expansion process with ¢, = "' the following result will be obtained

—T —T

. N
+S O () = 3 e () + O (V) (B5)
n=1

e

f(ze) = —¢

x x?
This expansion is not uniformly valid in any sub interval with = 0 as

0.025

-0.025¢}
-0.05} f(x; €)

-0.075
-0.1
-0.125 2
Z €"h,(x)
-0.15} ]

Figure B.1: Exact Solution and Outer Expansion

left limit point, in fact, this expansion is singular at x = 0, and it does not
provide a good approximation of B.4 no matter how small ¢ is chosen if x
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is allowed to become arbitrarily small. This is seen in fig. B.1, where B.4 is
compared with B.5 for the choice ¢ = 0.1. However, if x is restricted to lie
in the subinterval 0 < zo < =z < 1, then B.5 is uniformly valid there. The
source of the nonuniformity nearx x = 0 is easily traced to the expansion
of the denominator x + ¢ in the second term. This expansion is based on
the limit ¢ — 0 with z fixed and is thus incorrect if x = O (¢) or smaller.
It is natural to seek another expansion that adequately approximates B.4,
for x small. Since the nonuniformity occurs for z = O (g), and since the
combination x/e appears in the first term of B.4, one is led to the change of
variable z* = x/e

=e ¢ — = " B.6
u=eF - =) (B.6)

in this f and g define the same function with a change in variable but the
expansion of the g function is quite different from that for the f, it is

—x* 1 ex* 62117*2 63117*3

o) — 4y _
g(rie) = 7 —gm 5% ~ 2 oy TOE) =
N _p- i
= Yo &7 (@) + O (M)

(B.7)

One can note that this expansion gives a good approximation for u for small
x. In particular, the right-hand side of B.7 vanishes at 2* = = = 0 to all
orders in ¢, and this conforms with the exact value of u at x = 0. However,
B.7 fails to be uniformly valid for x* — oo, as seen in fig. B.2. Therefore,
the two expansions B.5 and B.7 have mutually exclusive domains of validity.
Depending on the magnitude of = compared with €, one expansion or the
other should be used. B.5 is named as outer expansion of u (because it is
valid away from the boundary point = 0), and the expansion B.7 is called
the inner expansion of u (because it is valid near x = 0). It can be found
that these two different expansions will produce the same result after the
substitution of the variable relative to the other expansion, it means that a
matching condition between them can be founded easily.

These kind of problems are called singular due to the presence of the
point of singularity.

B.2 Regular Expansions

B.2.1 Regular Expansions for Algebraic Equations

Consider a function u = f (x;¢e) which is defined implicitly as the root of
a certain algebraic equation R (x,u;e) = 0 that cannot be solved explicitly
for f(x;¢e) for arbitrary € # 0. If one is interested only in the solution of
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0.025¢

-0.025¢}

Y€ galx/€)

n=1
-0.05} f(I;G)

-0.075

Figure B.2: Exact Solution and Outer Expansion

R = 0 for ¢ small, and if R (x,u;0) = 0 is solvable, it is useful to construct
the asymptotic expansion of f (z;¢) as ¢ — 0.
One can create an expansion for f as

f®;e) = [(2;0) + ¢ (e) fa (®) +0(2(e)) ase =0 (B.8)

where ¢ is not given and should be choosen wisely depending on the relation
which came out after the substitution of the expansion B.8 in the equation
R (x,u;0) = 0. The choice of this value affect the importance given to the
different terms. Usually, for our purposes it can be choosen ¢, = 71, as it
will be shown in what follow.

Application: Kepler Equaition

Here is presented a very simple application of the concepts explained just
above. The equation choosen to be treated is the famous Kepler equation,
also known as the time of flight equation for elliptic orbits. It is

E—esinE =tn (B.9)

It is easy to see that if the eccentricity is zero the equation solution is trivial,
so one can think to look for a solution E (¢;e) for e — 0, which can be useful
for near circular orbits since in these cases it is 0 < e <« 1.

The expansion adopted for the solution is

E(t;e) = Eo (t;0) + ¢2 (€) Ea () + @3 (e) B3 (t) + 0 (g3 (e))
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and a good choice for the different expansion functions would be ¢, = e*~1,

E (t;€) = Ey (t;0) + eEy (t) + € E5 (t) + o (€7)

Substituting it into the equation B.9 it gives
(EO + el + 62E3) — esin (EO + el + €2E3) =1in

introducing the McLaurin series for the sine function, considering only the
terms up to the second—order and collecting wisely the different quantities
one obtains

Eo+ e (Ey —sin Ey) + € (B3 — Ey cos Ey) = nt
and applying the relation B.3 the different terms can be obtained
Ey=nt Ey;=sinky FE3= FE5cosk
so the solution found thanks to the expansion is
E (t;e) = nt + esin (nt) + e sin (nt) cos (nt)

Given that solution the problem is closed evaluating the true anomaly directly
from the eccentric anomaly with the relation

e —cos F

cosy = ———
ecosFF —1

In the figure B.3 are plotted the numerical estimation of E (dotted line)
and the approximated one (continuos line), and it is quite evident that they
are superimposed. In order to highlight the differences between them in the
figure B.4 is plotted the error between the two quantities.
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Figure B.3: Comparison between numerical (exact) solution and approxi-
mated one
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Figure B.4: Error between numerical (exact) solution and approximated one
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B.2.2 Regular Expansions for Ordindary Differential
Equations

The perturbative expansion can be used also to satisfying the task of finding
a function u (z;e) which is defined as the solutions of ordinary differential
equations that involve the parameter . There are two kind of situations: the
so called regular perturbation problems, where the asymptotic expansion of
the solution can be directly derived in a form that remains uniformly valid
throughout the domain of interest, and the singular perturbation problems,
in which an asymptotic expansion derived by a given limit process often fails
somewhere in the domain of interest.

To fix ideas, let L and M be given differential operators. For simplicity
assume L to be linear and consider the differential equation

L(u)+eM (u) =0 (B.10)

in some domain D with initial and/or boundary conditions that do not in-
volve €. Supposing that ug (x), the solution of

L(Uo) =0

satisfying the given initial and/or boundary data, is known. A solution of
the perturbed problem B.10 can be assumed in the form

u(x;e) =up (x) + ¢1(e) uy () + 0 (¢1) (B.11)

where ¢1 (¢) = 0(1) as € — 0 but is otherwise unknown. Substituting the
perturbation expansion in B.10 gives

¢1(e) L (u1) + 0(¢1) +eM (ug) =0 (B.12)

because L (ug + ¢1u1) = L (ug)+¢1 L (u) for a linear operator, and L (ug) = 0.
If 1 = O (¢), say ¢ = &, u obeys the linear inhomogeneous equation

L (uy) = —M (u0)

subject to zero initial and/or boundary data. Because this equation is in-
homogeneous, one finds a nontrivial solution u; = (). The other choice,
e < ¢1, is not of interest because it gives L(u;) = 0, and this, along with
the vanishing of the initial and/or boundary values, usually implies u; = 0.
The third alternative, ¢; > ¢, leads to an inconsistent condition: it requires
that M (ug) = 0, an algebraic relation that is not true in general. Once w; is
calculated using the last equation, the B.11 can be modified to include the

133



next higherorder term and proceed to derive the equation it obeys. Or one
can anticipate the structure of the expansion, say, ¢; = ¢, ¢ = €2, ... and
solve the sequence of inhomogeneous equations that result from B.10

where fy = 0, and each f; for ¢+ > 0 is a function of the previously calculated
solutions. The following example illustrates these ideas.

Application: Linear Oscillator

As a preliminary application can be choosen the response of a linear Spring-
Mass-Damping System, initially at rest, to an impulse [ (see fig. B.5). The
,:j?i":-';-f"f_. ':J:-.f__ A f,-:/' /

-
o & " o e )
o .r""/" - a"i'_"_..:gi'_;‘_‘d it g

Linear Spring

y K
R |
Y=0
Linear Damper
e
B
B o o A s

Figure B.5: Spring-Mass-Damping System

equation and initial conditions are

Y _dY
M=z + B + KY = 16 (T) (B.13)
o, _dy (07)
Y (0 )_T =0 (B.14)

where ¢ is the Dirac delta function. Thi problem can be replaced by an
equivalent one by considering an impulse-momentum balance across 7" = 0
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or by integrating the previous system from T'= 0" to T = 0% :

L2y dy
M=+ B+ KY = 0 (B.15)
Y (0%) 0 (B.16)
dy (0%) Iy

The solution defined by this problem is the fundamental solution of this linear
equation.

Before proceeding with the perturbation analysis, it is crucial to choose
dimensionless variables that are appropriate for the limiting case to be stud-
ied. Two such limiting cases are of interest for the linear oscillator: small
Damping and small Mass.

Small damping (cumulative perturbation)

If B is small, the motion is expected to be a weakly damped oscillation
close to the free simple harmonic oscillation of the system, the solution of B.15
with B = 0. For the introduction of dimensionless coordinates, a suitable time
scale is \/M/K, the reciprocal of the natural frequency of free undamped
motion, since this scale remains in the limit B — 0. The length scale A,
a measure of the amplitude, can be chosen arbitrarily, and this choice will
not affect the resulting dimensionless differential equation since it is linear.
Actually, it is convenient to choose A in a form useful to normalizing the
initial velocity. Setting

= T _Y
V/M/K Yy=1a
one finds » p
Y Yy
2e*—= = B.1
dt*+ adt*+y 0 (B.18)
where
B

*

E =
2VMK
In these variables y (0%) = 0, dy(0")/dt* = 1 if A = Iy/sqrtM K. The
solution involves the one parameter €*, and small damping corresponds to £*
small. The exact solution is easily found:

kg%
est

y(t'e) = = (B.19)

sin (\/ 1— 5*275*)
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A regular perturbation expansion of this solution, i.e., ¢* — 0 with ¢* fixed
and finite, is

y =sint* — "t sint* + O (e%) + O (e°t) + O (*¢*?) (B.20)
This result also follows if one assume the expansion
y=g (t)+e"g2 (t") + ...

and solve the equations that result for g; and g,. The expansion B.20 is
uniformly valid to O (¢*) only if ¢* is in the interval 0 < t* < Ty = O(1).
Small mass (singular perturbation)

~ o~ lo/B
“\.y/
'4 \"\.
/ ™
S
. —
‘\_‘_ - -
M decreasing
T

Figure B.6: Solution, varying M

A singular problem is associated with approximations of the starting
equations for small values of the mass M. The difficulty near T = 0 arises
from the fact that the limit equation with M = 0 is first—order, so that the
initial conditions cannot both be satisfied. The loss of an initial or boundary
condition in a problem leads, in general, to the occurrence of a boundary
layer. The general nature of the solution for small values of M is sketched in
figure B.6 with each solid curve corresponding to a fixed value of M. After
a short time interval, it can be expected that the motion of the system is
described by the limit form of the initial equation with M = 0:

Bd—y + KY = 1,6 (T) (B.21)
ar
The initial condition in velocity is lost, and the effect of the impulse is to
introduce a jump in the initial displacement from Y (07) = 0 to
I

Y(0+)=§°
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The solution is

If
Y = Eoe*KT/B (B.22)

The solution decays exponentially after the short initial interval in which
the displacement increases infinitely rapidly from 0 to Io/B. In order to
describe the motion during the initial instants, it must be remarked that
inertia is certainly dominant at 7" = 0 (impulse-momentum balance). Due
to the large initial velocity, damping is immediately important, whereas the
restoring force of the spring is not; the spring must be deflected before its
influence is felt. Thus, in the initial instants, the starting equation can be
approximated by

Y _dY
Mo + B = Lo (t) (B.23)
Y(07) =0 (B.24)
ay , _
ﬁ(o) = 0 (B.25)
with the solution s
Y (T) = EO [1— e~ BT/M] (B.26)

This solution shows the approach of the deflection in a very short time
(M — 0) to the starting value for the decay solution B.22. The curves are
shown dashed in figure B.6 and give an overall picture of the motion. With
the aim of constructing a suitable asymptotic expansions for expressing these
physical ideas and to show how to join these expansions. The method uses
expansions valid after a short time (away from the initial point) and expan-
sions valid near the initial point. For the expansion valid away from the initial
point, natural variables are those based on a time scale for decay (B/K) and
on an amplitude linear in /. Let

t=%T y=Br

so the equation becomes

d*y  dy
-2 42 =0 B.27
e + 7 +y ( )

where e = M K/B?, with initial conditions
y(0:e) =0 G (0:¢) = ¢
The exact solution is
1 t t
)= — (1= VT—4e) —| —exp |— (1 +VI—4¢) —
y(t; e) Vi {exp [ ( 5) 26] exp [ ( + 5) 26]}
(B.28)
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B.3 Multiple Scale Expansions

Various physical problems are characterized by the presence of a small dis-
turbance which, because it is active over a long time, has a non-negligible
cumulative effect. For example, the effect of a small damping force over many
periods of oscillation is to produce a decay in the amplitude of an oscillator.
A more interesting example having the same physical and mathematical fea-
tures is that of the motion of a satellite around Earth. Here the dominant
force is a spherically symmetric gravitational field. If this was the only force
acting on the satellite, the motion would be periodic (for sufficiently low en-
ergies). The presence of a thin atmosphere, a slightly nonspherical Earth, a
small moon, a distant sun, and so on, all produce small but cumulative effects
which, after a sufficient number of orbits, drastically alter the nature of the
motion. It is the aim of this section to discuss the method of multiple scales,
one of the two principal methods for accounting for small cumulative pertur-
bations over a long time. A central feature of the method is the nonexistence,
for long times, of a limit process expansion of the type used so extensively
in previous examples. As a result, one is led to represent the solution at the
outset in the form of a general asymptotic expansion. This is in contrast to
the situation encountered in the linear oscillator, where a general asymptotic
expansion arose at the last stage of computation when one combined an inner
and outer expansion to define the composite solution. Because limit process
expansions are not applicable, successive terms in the solution cannot be
calculated by the repeated application of limits and, more importantly, rules
must be established for the calculation of these terms. Viewed in this light,
the method of multiple scales is a generalization of a method proposed by
the astronomer Lindstedt for the calculation of periodic solutions.

Application: Weakly nonlinear Oscillator

An elementary example illustrating the basic ideas of the method of multiple
scales is that of a linear oscillator with small linear damping. This example
was formulated in the previous pages, simplifing the notation

d*y dy
— 4 2e— = B.2
72 + Edt +y=0 (B.29)
y(0;6) =0 (B.30)
dy
—(0:e) =1 B.31
Y (0:¢) (B.31)
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where ¢ is the ratio of the two time scales 17, T5:

T B
Ty /KM

Here T5 is the damping time

2M
b="5

which is long if B is small, and 27T} is the period of oscillation for B = 0:

M
T, =\ —
K
and T} is assumed to be small if compared with T5.
The physical phenomena occur over these two time scales as can be seen
clearly if the exact solution

—et

y = S sinvVI-— et (B.32)

1 — &2

is written in dimensional variables

—75 T
— L siny[1- T1 (B.33)
\/ (z) 2

For ¢ < 1 the period of damped oscillations in approximately 277} and the
damping time, which can be defined as the time it takes for the damping to
have an /(1) effect on the solution, is 75; an expansion of this solution is

y(t;e) =sint —etsint + O (%) + O (£°t) + O (£°t?) (B.34)

This expansion is associated with the limit process ¢ — 0, t fixed and is only
initially valid (0 <t < Ty = O (1)) due to the presence of the etsint term.
In this example, the first mixed-secular term encountered to O (e) is due to
the nonuniform representation for large times of the e~ term in the exact
solution. To O (g2), the expansion of e~ contributes a term proportional
to £2t?sint; a mixed-secular term proportional to €2t cost will also occur to
O (¢?) from the nonuniform representation of the siny/1 — 2t term in the
exact solution. It is also evident that mutually contradictory requirements
arise if one attempt to represent both et and sin+/1 — €2t uniformly for ¢
in the large interval I : 0 < t < T (¢) = /(¢71). In particular, the only
uniformly valid representation for e ! in this interval is e itself. Therefore,

139



it is needed the limit process € — 0, t = et fixed # 0 in order to represent e~

uniformly in I. However, this limit process does not exist for sin/1 — &2t =
sin /1 — €2t /e, as the argument of the sine function tends to infinity as ¢ —
0 with t = fized # 0. Another way of saying this is that the decaying
oscillatory function defined by the exact solution does not have an outer
limit. On the other hand, as pointed out in [11] Sec. 4.1, it is needed the limit
process € — 0, t7 = (1 — (¢2/2) + ...) t fixed # o0, i.e., an expansion in terms
of the strained coordinate ¢*, in order to uniformly represent sin+/1 — g2t

€ f€t+(1+52/2+...)

over I. In this case e ¢! is expressed as e and leads to essentially
the same nonuniformity in I as the initially valid expansion B.34.

General asymptotic expansion, two scale expansion

Any asymptotic expansion of the previous exact solution must simulta-
neously depict both the decaying and oscillatory behaviors of the solution
in order to be uniformly valid in I. It is clear that a limit process expan-
sion will not do so it is needed to look for a general asymptotic expansion
where each term depends on ¢ and e. In fact, if one avoid expanding e~** and
simply develop the argument /1 — 2t without further expanding the sine
function, it can be found the following general asymptotic expansion for the
exact solution in a form that is uniformly valid in I:

y(t;e) = Z (apesin @, (e)t) " + O (M) (B.35)

n=0

N|=

Here «,, follows from the expansion of the factor (1 —e?)"2 in the exact

1
solution, whereas €, results from expanding the frequency (1 — &?)2

1 n+1
Qon = an|H|2k‘3|5 n=0,1,.., (B.36)
T k=1
o1 = 0; n=0,1,2,.., (B.37)
Qple) = 1 (B.38)
n 1 J y
Qony () = 1—2ﬁ 12k —3|¥; n=1,2,.., (B.39)
j=1 T
an = anfl; n:1,2,..., (B40)

(B.41)
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In particular, the uniformly valid approximations to order 1,¢,e2,e3, ..., de-
noted respectively as y(©, yM, y® y® are

y @ = egint (B.42)
82
yM = e sin (1 — 5) t (B.43)
2 2
s = (1 + %) e~ sin (1 - %) t (B.44)
2 2 3 4
y® = <1 + %) e ctsin (1 — % — %) t (B.45)
(B.46)

As pointed out in Problem 6 of Sec. 4.1 [11], it is needed to account for the
frequency to O (¢M*!) in order to have uniform validity in 7 to O (V). In
this example, the frequency expansion proceeds in even powers of ¢.

It can be noted also that the general asymptotic expansion B.35 to any
@ (5N ) may be expressed uniquely in the form of a series of functions of tine
fast scale t}; = Qu (£) and the slow scale ¢ = et. In fact, the exact expression
is itself a unique function of ¢t and ¢ where tI, = Q. (g)t = V1 — €2t.

So it is

y(t;e) = F (t5,6¢)

oo )

where

ot
V1—¢g?
and for a given integer N, F' as a unique two-scale expansion correct to
@) (5N ) uniformly in I of the form

F(th,te) = sint

F=> F,(t§.t)e"+ 0 (") (B.47)

n=0
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where for N even is

Fy = e tsint} (B.48)
Fi=0 (B.49)

e—f
F,= 5 sin t; (B.50)
F;=0 (B.51)
(B.52)
Fy = aye tsint}, (B.53)
ty = (e)t (B.54)

Two-scale expansion of the differential equation

Guided by the above results, lets try to reconstruct the expansion B.47
from the governing differential equation and initial conditions without direct
knowledge of the exact solution, this idea will later be applied to nonlinear
problems where the exact solution is not available. The fundamental assump-
tion is that solutions have a general asymptotic expansion that is uniformly
valid in the interval I: 0 <t < T (¢) = O (¢7'), and each term in this general
asymptotic expansion can be uniquely expressed as a function of ¢*,¢ and
a power of € as in B.47, this assumption allows to calculate uniformly valid
expansions in a wide variety of problems. Examining the implications of this
assumption: suppose to encounter a mixed-secular term of the form 5t§r sin t;’
in the O (g) contribution to the expansion, where t; = (I + cw; + c%w)t.
Such a term is not consistent with a uniquely defined two scale expansion
because this term can be expressed as follows:

ety sint] = tsint] + cwitsinty + e*wytsinty (B.55)

and redistribute its contribution to various orders. A term need not become
unbounded as ¢ — oo to be inconsistent. For example, the exponentially
decaying term ete* sin t5 is also unacceptable because one can always relabel
et in terms of ¢t and £ and change its nominal order, i.e.,

et = et

— 2wt — Swot + ...

We note, however, that it is not possible to uniquely allocate an O (g) con-
tribution in the frequency in terms of a t* and ¢ contribution. To see this,
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consider a term of the form
g =sin (1 + ew; + *wy + ew3) ¢
for given nonzero constants wy, ws, ws. With ¢; defined as
(1 + ewy + 2wq + 53w3) t

such a term would simply be denoted g = sint;. However, if another fast
scale it is choosen, say, t5 = (1 + e%wy + e3ws3) t instead of ¢5 , then it is found
g = coswitsinti + sinwitcosts. In fact, there are an infinite number of
possible choices of fast scale corresponding to different choices of the O (¢)
term in the expansion of the frequency €2; each of these choices results in
a different two-scale representation for g. To avoid this ambiguity, we will
henceforth set w; = 0 in the definition of t* and account for it via the ¢-
dependence of the solution. Looking for a two-scale expansion of the solution
of the initial system in the form

N
y(t;e) =F (t7,te) = Z F, (tT) " + O (eM+) (B.56)
n=0
Here
tt=(1+wr+ w3+ ...) ¢ (B.57)

where wy, ws, ... are unknown constants, and ¢ = et. The chain rule gives

dy OF OF

7 = (1 + SQCUQ + 5‘30.]3 + ) % —+ €§ <B58)
d2y 2 3 2 82F
o (1+ w2 + ’w3 + ... 5 T (B.59)
0*F O*F
2 2 2
+ 2 (14 wy +wy+...) 5rar T C o (B.60)

and using the expansion for F it is found to O (£?)

dy 8F0 (‘3F1 8F0 2 8F2 8F1 aF()
A _ = B.61
it~ ott (at+ * at) <8t+ T +w28t+> (B:61)
d2y 82F0
— = _ — + (B.62)
i)
62F2 02F1 62F0 82F0
2 — —
+ € (at+2+28t+8t‘+2w28t+2+ at‘?> (B.63)
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Thus, the sequence of equations that results from the initial equation is

O?F,
L(F) = at+§+F0:0 (B.64)
?F, OF
L(F) = — at+aof_237+0 (B.65)
2 2 2
L) = o PR PRy R 08 0R (B.66)

oz a2 “ortor T ot Tott

The first of these is the equation for the free oscillations, while the re-
mainder have the appearance of forced linear oscillations. However, since
Fy = Fy (t*,t), the free linear oscillations that are the solutions to B.64 have
the possibility of being slowly modulated. Thus, it can be written

Fy (t7,8) = Ao (t) costt By (f) sint™ (B.67)

imposing the initial conditions and using the derivatives rules previuos ex-
plained one has

Fy(0,0)=0 9% (0,0) =1
Fi(0,0)=0 gt =52 (0,0)
F5(0,0)=0 572 (0,0) = =% (0,0) — wy 32 (0,0)

and these equation leads to the following conditions

Nothing more can be found out about Ag (¢) and By (¢) without considering
Fy. This is directly analogous to the situation encountered in Sec. 4.1 of
[11] for the method of strained coordinates. Substituting for Fj into the
right-hand side of B.65 gives

L(F) =2 {d—A_O + AO} sintt — 2 {d—B_O + BO} cost™ (B.69)
dt dt

The bracketed terms on the right-hand side of this equation are functions

of t only. Therefore, the particular solutions corresponding to these terms

would be functions of ¢ multiplied by the mixed-secular terms ¢ sint™ or

t* cost™. Such terms cannot be permitted to occur in the solution because,

as discussed earlier, they are inconsistent with a unique Fj.
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Therefore, it is needed to eliminate all homogeneous solutions of L (F}) =
0 from the right-hand side of the last equation, and this gives the two first-
order ordinary differential equations for Ay and By:

dAy

Ao g0 = B.
=t =0 (B.70)
dBy

7 + Do ( )

Taking account of the initial conditions, it is found that

AO (ﬂ = 0, BO (ﬂ = €_t <B72)
The uniformly expansion to O (1) is
y(t;) = e tsinttO (e) (B.73)

where t7 = (14 O (¢?))t and this agrees with the exact result (see B.42).
Thus far, it has been determined the first two terms in the expansion

Fy (t+,7) = e 'sint" (B.74)
Fy (t%,1) = Ay (f) cost™ By () sint™ (B.75)
and finally F5 becomes
A - B
L(F;) = {2 (% + A1> + 2wy + 1) e_t} sintt — 2 {% + Bl] cost™
(B.76)

Now, A; (t), By (t), and the frequency shift wy are to be found from similar
considerations applied to this last equation.

First, repeating the argument that homogeneous solutions of L (F3y) =
0 cannot be permitted, it must be setted the bracketed terms in the last
equation equal to zero. Solving the resulting equations for A; and B subject
to the initial conditions A; (0) = By (0) = 0, it is found

1\ _ -
Al (E) = — ((,L)Q + 5) te*t (B??)
Bi(t) = 0 (B.78)
This means that e F} would contain a term proportional to ete* cost*. Again,
such a term cannot be consistent because, as pointed out earlier, it can also

be written as e2et+ costtO (¢3) and shift to O (¢2) in the expansion. One
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can also have required that |Fy/F;| be bounded for large ¢ to disallow such
a term. Therefore, it must be setted

WQ:—§

and the following uniformly valid result in I to O (¢) is found

2

y (t;€) = e 'sin {1 - % +0 (53)} t+0 (%) (B.79)

All the necessary reasoning has now been explained to carry out the
solution to any order and, in fact, to solve a wide variety of weakly nonlinear
problems of the form

2

d7y dy
) = B.
dt2+y+€f (y, dt> 0 (B.80)
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Appendix C

Fundamentals of Optimization
Methods

In this chapter a brief general overview on optimization methods is given,
first of all there is a classification of optimization tecniques and then the
description of each category, but only for the direct methods are reported
some details, since this category is the one used for apply the perturbative
expansions previously derived.

C.1 Classification

Optimization algorithms are usually divided in three groups
e Indirect Optimization Methods;
e Evolutionistic Methods;
e Direct Optimization Methods.

Each category has its peculiarity which fit some kind of problems better than
others, their description is given in the next sections.

C.2 Indirect Optimization Methods

These methods can face continous problems, so they are not affected by
the problem of the discretization. First of all must be defined the following
quantities:

e t indipendent variable;
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x state variables (n-component vector);

u control variables (m-component vector);

x = dz/dt = f (x,u,t) state equations (n-component vector of differ-
ential equations);

¥ (xo, xy, to, tr) = 0 boundary conditions (g-component vector of alge-
braic equations, ¢ < n + 2)

and the issue is to find the so called extremal path (i.e. the trajectory) x (t)
and the corresponding optimal control law w () satisfying the state equations
and the contraints to maximize (or minimize, it is the same')the functional,
i.e. performance index,

ty
J = ¢(xo, s, to,ty) +/ O (x,x,t)dt (C.1)

to

What the indirect methds do, as their name suggest, is to obtain the
condition for the maximum of the performance index without evaluating it
directly. In order to work on a functional which automatically takes into ac-
count the constraints it is useful /needed to build the augmented performance
index .

f
J*=J+uT¢+/ [@ + X7 (f — )] dt (C.2)
to
where A are the adjoint variables and g are the adjoint constants; in this
way, when the contraints are satisfied

J =J

In order to obtain the optimality conditions one has to analize the first
variation of the augmented index, so

a1 = (82+u"3L+ Hy)dtpt
(g2 +pur2e 8"’ — Hy) dto+
(—AT + 8;; + ungf) da s+
(AT + 22 + uT 22 ) day

fttf [(%_1;1 +A ) dx + ?;—55’“} dt

+ o+ o+ o+

0

'Minimize the time ¢ can be seen as maximizing —t.
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in the maximum point the first variation must be equal to zero and isolating
each term one obtains: two boundary conditions for optimality (2n algebraic
equations at initial and final point)

O¢ oY 9¢ o

f+<9a:f+u’ ox s ’ O+8a:0+“ oz (C3)

two transveraslity conditions (2 algebraic equations at initial an final time)

9o 10 99 , 0P

—+u —+H=0, —+p ——Hy=0

o, T H o, T ot, Moo,
one set of differential equations for the adjoint variables, Eulero-Lagrange
equations (n differential equations)

T
o od
ox
and one set of equations for the optimal control (m algebraic equations for
the control variables)
T
ou

So the problem is completely defined and all the variable trends in time
can be determined solving numerically the differential equations. Besides this
reasoning there are also other kind of evaluations, like the controllability con-
dition and the second variation evalutation, but here they are not taken into
account. The main problems for these methods are the possibility of finding
suboptimal solutions instead of globally optimal ones, and the dependence
on the initial guess for the convergence.

C.3 Evolutionistic Methods

These methods can deal only with discrete systems and also a small number
of variables (maximum twenty), in fact they are applied in astrodynamics
only with impulsive thrust trajectory because of the need of discretization
that make impossible their use in low-thrust problems.

There are a lot of them, here after are listed the principal ones.

Genetic Algorithms

This category emulate the human evolution, a set of individuals (the set of
possible solutions) are randomly initialized then their own performance index
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is evaluated and the natural selection is performed taking this quantity as
discriminant between who is suitable for the given ambient (the optimization
problem) and who is not; the selection method can be done in many different
ways, for example two ways are the tournament and the roulette: the first
one consist in compare the solutions in couples two times each, the winner
(who has the best index) in putted in the parents group and the looser is
not; in the roulette method the probability clove is given proportional to
the performance index and then the extraction is take randomly. After this
selection the best individuals are used to generate a new younger genration
of solutions, by means of the crossover function, a particular function which
decide randomly how near or far the sons would be respect to the parents;
then the algorithm is repeated until the value of a certain parameter (number
of iterations, increment of performance index, etc.) is matched.

There are some particular techniques which can be used for avoid the local
minimun, and they are inspired by the nature too, so sometimes the worse
individual are allowed to reproduce, sometimes there is a mass extinction of
individuals and only few of the best survive, other times are mutations are
allowed, etc.

Particle Swarm Optimization

This algorithm simulate fishes or birds looking for food, a randomly initialized
set of solution is created and this time, instead of being replaced by other
solutions, the individuals move in the domain of the problem. Their motion
is assumed to be similar to the one adopted by a flock of animals when
looking for food, in particular the acceleration of the individuals is given by
two terms

v o= v+ Clkl (xP,best - ZL‘) + CQkQ (xG,best - l’)
Yy = X + v

the first is the personal-cognitive one (which points towards the area where
the best value of performance index has been found in the previous steps)
and the second is the global-social one (which points torwards the area where
the best value of performance index has been found by the whole group); also
in this case there are some strategies for impoving the method, for example
for the choice of the coefficients of the acceleration and in the choice of
associating an intertia to the old velocity.
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Differential Evolution

This method simulate the evolution too, a randomly generated set of solutions
is created but in this case the process is more simple and the new population
is created adding to one individual (it can be the best one or not) a component
proportional (by means of some constants which can be used as degrees of
freedom) to the difference between other two (or more than two) individuals:

y=ux1+C (v —x3) + F (24 — x5)

and the choice of x; characterize the method. In this way when the differences
are big (at the beginning of the search) the domain is explored widely, while
when the solutions are near the real optimum the search is performed only
in that restricted area.

There are a lot of other method, like for example the ant colony optimiza-
tion which simulate the motion of the ants (very useful in vehicle routing
problems), the simulated annealing which simulate the behaviour of metallic
crystals that hare first heated and then cooled, the invasive weed optimiza-
tion which emulate the weed expansion when looking for a suitable ambient,
etc.

Since the initialization is done randomly and the search method is not
based on standard optimality conditions these methods should not fall in
sub-optimal solutions, but there is not any certainty of convergence, in fact
often the method is evaluated looking to the percentage of times it converges
(in test case for which the optimal solution in known) on the total of the
runs.

C.4 Direct Optimization Methods

In these methods the perturbative expansions will be applied so the descrip-
tion of them would be a little bit more detailed. They need to discretize the
trajectory, so this is an optimization of discrete systems: performance index
¢ (x) must be maximized with the contraints ¢ () > 0, where

e x is a n-component vector of variables, 7 = [z, 25, ..., 2,];

e c is a m-component vector of constraints, c = [c1, €2y vy O], and m
maybe larger than n;

if both the performance index and the constraints are linear this problem is
called Linear Programming, and a tipical solving method si the simplex one,
but since in space design the relations are always nonlinear here it is not
analized.
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When ¢ and ¢ are nonlinear the maximization problem become the so
called Nonlinear Programming, usually it is faced with various gradient meth-
ods which differ for the choice of the step and some other features, but here
we refer to the so called Sequential Quadratic Programming - SQP.

Sequential Quadratic Programming

It is based on two approximations: one second—order approximation for the
performance index and a first-order one for the constraints and the maxi-
mization problem solution is found by the solution of a succession of quadratic
programming problems starting from a tentative solution @. Assuming those
approximations one can write

p(x+Azx) = ¢(x)+g Az + %AwT [H] Ax (C4)
c(x+ Ax) = c(z)+[G]Ax (C.5)
where the linear approximation for the gradient is adopted and
g(x+Ax)=g(x)+ [H| Ax

where [H] is the Hessian Matrix.

In order to treat the constraints the active set method can be used, it
implies to consider the augmented performance index and to consider some
constraints as active (¢,) and some inactive (¢,,), so

" = (x)+ Ae,

and considering an increment one has
¢* (x+ Az) = ¢" (z) + (9" + Al [G]) Az + %Aa:T [H] Ax
where the augmented Hessian is
[H') = [H] +0 [0 (A ca/0m)" | /02

and the conditions for optimality (for the given active set) are

g+[Ga" A = 0

c, = 0

and the addition of
Az" [H| Az <0
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for any variation Ax makes this set of condition sufficient for a maximum.
In general these conditions are not satisfied in a generic point so looking
for a new point x + Az, A, + A\, one can write

g(x)+ [H] Az + [G.)" A+ AX) = 0
c. (@) + G| Az =0

where
gx+Azx) = g(x)+ [H]Ax

co(@+Az) = c,(x)+[G,] Az

and the previous equations can be rewritten in the most known form of the
so called Karush - Kuhn - Tucker equations

X T
H'] [G.] Ax —g
(G, 0 Ao+ AN, —c,
and the search for the new point become an iterative procedure.
In the active set method one must not violate the inactive constraints so

the step in the gradient direction towards the maximum point can be limited
by a factor o € [0, 1] where

. _Cna,i
a=min|5——,1
Cna,iA
e Az
T

when o < 0 it is determined by c,,,; = 0 so the costrain must be added to the
active set and when \,; < 0 the corresponding constrain must be removed
from the active set.

Until now the method can be regarded as a simple Newton’s method,
but there are some strategies for improving the algorithm, these are the
main differences respect to the indirect methods; in particular this task is
accomplished looking at the performance index in order to see if it is growing
or not. A merit function is defined and in order to take into account also the
constraints it can be defined as

M=¢+Ale, - %caT [p] c.,
and it is the augmented Lagrangian merit function, with p diagonal matrix
with non negative terms: once Ax and A\ are calculated the merit function
is only a function of « so it is possible to chose the value of this parameter
for which the merit function is maximum; this method is the so called linear
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search. There is also the trust region method which associate at the approx-
imation of the index and the constraints a region of validity and doing this
another equation cames out

%AwTAc < 62

so the KKT equations has to be modified introducing instead of the aug-
mented Hessian matrix the term [H*| — 7 [I].

For computational reasons linked to the calculus of the matrix and their
factorization, can be useful to introduce the slack variables, in this way one
can transform inequality constraints in equality ones and force the inequality
on the slack variables.

As said at the beginning of the section direct optimization can only deal
with discrete systems, so the trajectory must be splitted into finite arcs, for
example if the time is the indipendent variable it must be splitted in small
intervals t;; 1 — t; = h; where h; is the integration step and an algebraic ap-
proximation must be introduced y,,; = y, + fti”l f (y,t)dt. This relation
can be translated in terms of an integration scheme (Runge Kutta, Trape-
zoidal, Hermite Simpson, etc.). The usual way of solving these problems
is tho use the Direct Transcription, it implies the use of a Multiple Shoot-
ing technique: the variables are the state and the controls at each node of
any subinterval previously defined, supplementary equations are the match-
ing conditions between the final point of one interval (which depends on the
initial values on the node of that small subelement and the corresponding
states and controls equations) and the initial one on the next element (see
next figure for clearness). In order to evaluate the various matrix (gradient,

X m Initial Guess 3
@ Final Point

B Defect
[ ]

ti+1 t
Figure C.1: How multiple shooting works
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hessian, etc.) a perturbation on the initial parameters is introduced on the
first integration step and then it is applied the recursive procedure.
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